File size: 27,279 Bytes
661ec13
 
 
 
 
 
 
 
4c7255e
 
661ec13
 
 
 
4c7255e
661ec13
 
 
5bcba47
661ec13
 
 
 
 
 
 
 
 
ff3c171
4c7255e
 
661ec13
 
4c7255e
661ec13
 
 
 
 
 
 
4c7255e
 
661ec13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c7255e
 
 
 
 
 
 
661ec13
4c7255e
661ec13
 
 
 
4c7255e
661ec13
 
 
4c7255e
 
661ec13
 
 
 
 
4c7255e
661ec13
 
 
4c7255e
 
661ec13
4c7255e
 
 
 
 
 
661ec13
 
4c7255e
 
 
 
 
 
 
661ec13
4c7255e
 
ff3c171
4c7255e
ff3c171
4c7255e
 
 
661ec13
4c7255e
 
 
 
661ec13
4c7255e
 
 
 
 
 
 
 
 
 
661ec13
4c7255e
 
 
661ec13
4c7255e
 
 
661ec13
4c7255e
 
 
661ec13
 
 
4c7255e
661ec13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff3c171
661ec13
 
 
 
 
 
 
4c7255e
 
661ec13
4c7255e
661ec13
 
 
 
4c7255e
ff3c171
4c7255e
 
661ec13
 
ff3c171
661ec13
 
 
ff3c171
4c7255e
 
 
 
 
 
 
661ec13
 
 
4c7255e
 
 
 
661ec13
4c7255e
 
ff3c171
 
 
4c7255e
 
 
 
 
 
 
 
ff3c171
 
 
4c7255e
 
 
 
 
 
 
 
 
 
 
661ec13
4c7255e
 
 
 
 
 
 
 
 
 
ff3c171
4c7255e
 
 
 
 
 
 
 
 
ff3c171
4c7255e
ff3c171
 
 
 
 
4c7255e
 
 
 
 
 
 
 
 
 
ff3c171
4c7255e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff3c171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c7255e
 
 
ff3c171
4c7255e
 
 
 
ff3c171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c7255e
 
 
 
 
ff3c171
 
 
 
 
 
4c7255e
 
 
 
 
 
 
ff3c171
 
 
 
 
 
 
 
 
 
 
 
 
 
4c7255e
 
 
 
 
 
 
 
 
 
661ec13
4c7255e
 
 
 
 
 
 
 
661ec13
4c7255e
 
 
 
661ec13
4c7255e
 
 
 
 
ff3c171
 
 
 
 
 
4c7255e
 
 
 
ff3c171
4c7255e
 
 
 
 
 
ff3c171
 
 
 
4c7255e
ff3c171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c7255e
ff3c171
 
4c7255e
ff3c171
 
661ec13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c7255e
ff3c171
 
661ec13
 
 
 
 
 
 
4c7255e
ff3c171
4c7255e
 
 
 
 
 
 
 
661ec13
 
 
 
 
 
4c7255e
 
 
 
 
 
661ec13
 
 
4c7255e
ff3c171
 
4c7255e
 
 
 
 
 
 
 
 
 
 
 
ff3c171
 
 
 
 
4c7255e
 
 
 
ff3c171
4c7255e
 
 
 
 
 
ff3c171
661ec13
ff3c171
4c7255e
 
 
 
661ec13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
import spaces
import gradio as gr
import subprocess
from PIL import Image,ImageOps,ImageDraw,ImageFilter
import json
import os
import time
import mp_box
from mp_estimate  import ratios_cordinates,estimate_horizontal,estimate_vertical,mean_std_label,normalized_to_pixel,get_feature_angles_cordinate,create_detail_labels,get_feature_ratios_cordinate
from mp_utils import get_pixel_cordinate_list,extract_landmark,get_pixel_cordinate,get_pixel_xyz,get_normalized_landmarks
from glibvision.draw_utils import points_to_box,box_to_xy,plus_point


from glibvision.cv2_utils import plot_points,create_color_image,pil_to_bgr_image,set_plot_text,copy_image
from glibvision.numpy_utils import rotate_point_euler,load_data
from gradio_utils import save_image,save_buffer,clear_old_files ,read_file

import cv2
#from  cv2_pose_estimate import draw_head_pose

import numpy as np
from numpy.typing import NDArray

'''
    innner_eyes_blur - inner eyes blur
    iris_mask_blur - final iris edge blur
'''

def process_images(image,base_image,order,
                   double_check_offset_center,center_index,
                   draw_mediapipe_mesh,z_multiply=0.8,draw_mediapipe_angle=False,draw_hozizontal_line=False,draw_vertical_line=False,draw_faceratio_line=False,
        progress=gr.Progress(track_tqdm=True)):
    clear_old_files()
    """
    image_indices = [4,199,#6,#center of eye
                        133,362,#inner eye
                        33,263, #outer eye
                        61,291]#mouth
    """
    

 

    def landmarks_to_model_corsinates(face_landmarks,indices,w,h):
        cordinates = []
        z_depth = w if w<h else h
        z_depth *=z_multiply
        for index in indices:
            xyz = get_pixel_xyz(face_landmarker_result.face_landmarks,index,w,h)
            #print(xyz,xyz[2]*z_multiply) #TODO chose?
            cordinates.append([
                xyz[0],xyz[1],xyz[2]*z_depth
            ])
        return cordinates

    if image == None:
        raise gr.Error("Need Image")
    cv2_image = pil_to_bgr_image(image)
    size = cv2_image.shape
    center: tuple[float, float] = (size[1] / 2, size[0] / 2)


    import math
    def calculate_distance(xy, xy2):
        return math.sqrt((xy2[0] - xy[0])**2 + (xy2[1] - xy[1])**2)

    mp_image,face_landmarker_result = extract_landmark(cv2_image,"face_landmarker.task",0,0,True)
    im = mp_image.numpy_view()
    h,w = im.shape[:2]

    first_landmarker_result = None
    def get_first_landmarker_result():
        if first_landmarker_result:
            return first_landmarker_result
        else:
            return face_landmarker_result

    first_translation_vector = None
    if double_check_offset_center:
        root_cordinate = get_pixel_cordinate(face_landmarker_result.face_landmarks,center_index,w,h)#nose tip
        diff_center_x = center[0] - root_cordinate[0]
        diff_center_y = center[1] - root_cordinate[1]
        base = np.zeros_like(cv2_image)
        copy_image(base,cv2_image,diff_center_x,diff_center_y)
        #cv2.imwrite("center.jpg",base)
        first_landmarker_result = face_landmarker_result
        mp_image,face_landmarker_result = extract_landmark(base,"face_landmarker.task",0,0,True)
        im = mp_image.numpy_view()
        transformation_matrix=first_landmarker_result.facial_transformation_matrixes[0]
        rotation_matrix, first_translation_vector = transformation_matrix[:3, :3],transformation_matrix[:3, 3]
    else:
        diff_center_x=0
        diff_center_y=0
        #return base,"",""

    #cordinates = get_pixel_cordinate_list(face_landmarker_result.face_landmarks,image_indices,w,h)
    




    if draw_mediapipe_mesh:
        result = first_landmarker_result
        if result == None:
            result = face_landmarker_result
        image = mp_box.draw_landmarks_on_image(result,image)
        cv2_image = pil_to_bgr_image(image)#here must be bug,but somehow working

    




    # draw lines

    #x_ratios = []
    z_angles,y_ratios,h_cordinates,_ = estimate_horizontal(get_first_landmarker_result().face_landmarks)
   
    if draw_hozizontal_line:
        for cordinates in h_cordinates:
            #print(cordinates)
            points = normalized_to_pixel(cordinates,w,h)
            #print(points)
            plot_points(cv2_image,points[:2],False,5,(255,0,0),3)#last one is middle point on horizontal
        
            

    _,x_ratios,v_cordinates,_ = estimate_vertical(get_first_landmarker_result().face_landmarks)
    if draw_vertical_line:
        for cordinates in v_cordinates:
            plot_points(cv2_image,normalized_to_pixel(cordinates,w,h),False,5,(0,0,255),3,(255,0,0))#second one is middle point on vertical

    #these are for training feature
    key_cordinates,angles = get_feature_angles_cordinate(get_first_landmarker_result().face_landmarks)
    for cordinates in key_cordinates:
            pass
            #plot_points(cv2_image,normalized_to_pixel(cordinates,w,h),False,5,(0,0,255),3,(255,0,0))
    key_cordinates,angles = get_feature_ratios_cordinate(get_first_landmarker_result().face_landmarks)
    for cordinates in key_cordinates:
            pass
            #plot_points(cv2_image,normalized_to_pixel(cordinates,w,h),False,5,(0,0,255),3,(255,0,0))
               

    z_angle_text = mean_std_label(z_angles,True)
    y_ratio_text = mean_std_label(y_ratios)
    x_ratio_text = mean_std_label(x_ratios)

    z_angle_detail = create_detail_labels(z_angles,True)
    y_ratio_detail = create_detail_labels(y_ratios)
    x_ratio_detail = f"forehead-chin = {np.mean(x_ratios)}"


    focal_length: float = calculate_distance(cordinates[0],cordinates[1])
    focal_length = focal_length*1
    
    camera_matrix: NDArray = np.array([
        [focal_length, 0, center[0]],
        [0, -focal_length, center[1]],
        [0, 0, 1]
    ], dtype="double")
    dist_coeffs: NDArray = np.zeros((4, 1))

    # offset center usually improve result

    image_points: NDArray = np.array(cordinates, dtype="double")

    from scipy.spatial.transform import Rotation as R
    def print_euler(rotation_vector,label=""):
        order = "yxz"
        rotation_matrix, _ = cv2.Rodrigues(rotation_vector)
       
        r = R.from_matrix(rotation_matrix)
        euler_angles = r.as_euler(order, degrees=True)
        label = f"{label} Euler Angles {order} (degrees): {euler_angles}"
        return label

    rotation_vector = None
    translation_vector = None
    im_with_pose = cv2_image
    mediapipe_text = None

    
    def face_landmarker_result_to_angle_label(face_landmarker_result,order="yxz"):
        if len(face_landmarker_result.facial_transformation_matrixes)>0:
            
            transformation_matrix=face_landmarker_result.facial_transformation_matrixes[0]
            
            rotation_matrix, translation_vector = transformation_matrix[:3, :3],transformation_matrix[:3, 3]
            #TODO change base-size
            vector_multiply=10
            scaled_translation_vector =(translation_vector[0]*vector_multiply,translation_vector[1]*vector_multiply,translation_vector[2]*vector_multiply)
            #scaled_translation_vector = (-512,-512,-1024)
            #im_with_pose = draw_head_pose(im_with_pose, image_points, rotation_matrix, scaled_translation_vector, camera_matrix, dist_coeffs,32,-diff_center_x,-diff_center_y)
            #print("mediapipe",scaled_translation_vector)
            #mediapipe_label = print_euler(rotation_vector,"MediaPipe")
            r = R.from_matrix(rotation_matrix)
            euler_angles = r.as_euler(order, degrees=True)
            #label = f"Media pipe {order}-Euler Angles [x,y,z] (degrees): [{euler_angles[1]:.2f},{euler_angles[0]:.2f},{euler_angles[2]:.2f}]"
            label = f"[{order[0]}:{euler_angles[0]:.2f},{order[1]}:{-euler_angles[1]:.2f},{order[2]}:{-euler_angles[2]:.2f}]"
            
            return label,rotation_matrix,scaled_translation_vector
        
    if first_landmarker_result != None:
        mediapipe_first_text,_,_ = face_landmarker_result_to_angle_label(first_landmarker_result,order)
    else:
        mediapipe_first_text = ""
        
    mediapipe_second_text,rotation_matrix,scaled_translation_vector = face_landmarker_result_to_angle_label(face_landmarker_result,order)

    rotation_vector, _ = cv2.Rodrigues(rotation_matrix)
    translation_vector =  scaled_translation_vector

    #if first_translation_vector.all():
    #    translation_vector = first_translation_vector
    #im_with_pose = draw_head_pose(im_with_pose, image_points, rotation_vector, translation_vector, camera_matrix, dist_coeffs,255,-diff_center_x,-diff_center_y)
        
        # mediapipe metrix
        #print("opencv",translation_vector)

   
    if draw_mediapipe_angle:
        root_cordinate = get_pixel_xyz(get_first_landmarker_result().face_landmarks,4,w,h)
    
        r = R.from_matrix(rotation_matrix)
        euler_angles = r.as_euler("yxz", degrees=False)
        #print(r.as_euler("yxz", degrees=True))
        draw_cordinate1=rotate_point_euler((0,0,-100),[-euler_angles[1],euler_angles[0],euler_angles[2]],"yxz")
        draw_cordinate2=rotate_point_euler((0,0,-200),[-euler_angles[1],euler_angles[0],euler_angles[2]],"yxz")
        
        plot_points(im_with_pose,[root_cordinate[:2]+draw_cordinate1[:2],root_cordinate[:2]+draw_cordinate2[:2],root_cordinate[:2]],False,5,(0,128,0),3,(0,255,0))

    #analyze face ratios
    landmarks = get_normalized_landmarks(get_first_landmarker_result().face_landmarks)
    face_ratio_infos = []
   

    #print("landmark",[landmarks[37],landmarks[267]])
    #print("numpy",np.array([landmarks[37],landmarks[267]]))
    #print("mean",np.mean(np.array([landmarks[37],landmarks[267]]),axis=0))
    v_cordinates=[
    ["philtrum",landmarks[175],landmarks[13],np.mean((landmarks[164],landmarks[2]),axis=0).tolist()],
    ["straight",landmarks[175],landmarks[94],landmarks[9]],
    ["face",landmarks[175],landmarks[9],landmarks[127],landmarks[356]],
    ["r-eyes",landmarks[33],landmarks[190],landmarks[414]],
    ["r-contour",landmarks[127],landmarks[33],landmarks[190]],
    ["l-eyes",landmarks[263],landmarks[414],landmarks[190]],
    ["l-contour",landmarks[356],landmarks[263],landmarks[414]],
    ["lips",landmarks[17],landmarks[13],np.mean((landmarks[37],landmarks[267]),axis=0).tolist()],
    ["mouth-eye",landmarks[61],landmarks[291],landmarks[133],landmarks[362]],
    ]
    
    for cordinates in v_cordinates:
            ratio=ratios_cordinates(cordinates[1:])
            if draw_faceratio_line:
                plot_points(cv2_image,normalized_to_pixel(cordinates[1:],w,h),False,5,(0,255,255),3,(255,255,0))
            label = f"{cordinates[0]}:{ratio:.2f}"
            face_ratio_infos.append(label)
    face_ratio_info=",".join(face_ratio_infos)
    return cv2.cvtColor(im_with_pose,cv2.COLOR_BGR2RGB),mediapipe_first_text,mediapipe_second_text,z_angle_text,y_ratio_text,x_ratio_text,z_angle_detail,y_ratio_detail,x_ratio_detail,face_ratio_info


#deprecated
def find_nearest_weighted_euclidean_2d(target_angles_full, all_angles_full, weights):
    target_angles = target_angles_full[:5]  # 最初の3つの角度を使用
    all_angles = all_angles_full[:, :5]  # 最初の3列を使用

    weighted_diff = (all_angles - target_angles) * weights
    distances = np.linalg.norm(weighted_diff, axis=1)
    nearest_index = np.argmin(distances)
    return nearest_index, all_angles_full[nearest_index]

import math
from mp_estimate import estimate_horizontal_points ,estimate_vertical_points,estimate_rotations_v2

import joblib
stacking8_model = joblib.load(f"models/stacking8.joblib")
cached_models = {}
def find_angles(image,order):
    if image is None:
         raise gr.Error("need image")
    cv2_image = pil_to_bgr_image(image)
    size = cv2_image.shape
    mp_image,face_landmarker_result = extract_landmark(cv2_image,"face_landmarker.task",0,0,True)
    
    
    features_text = estimate_rotations_v2(face_landmarker_result)
    features_value_origin = [float(value) for value in features_text.split(",")]
    features_value = features_value_origin.copy()
    print("features x-angle",math.degrees(features_value[3])-90)
    #print(features_value)
    #weights = np.array([0.2, 0.2,0.3,0.3])

    #index,matched = find_nearest_weighted_euclidean_2d(target_angles,all_angles,weights)
    #index,matched = find_nearest_euclidean_2d(target_angles,all_angles)
    #formatted_arr = [np.format_float_positional(x) for x in matched]
    #print(formatted_arr)
    x_ratios = 11 #magic vertical ratios
    
    #short
    features_values = [
        [np.add(features_value[-x_ratios:],features_value[0:1])],
        [features_value[:-x_ratios]],
        [np.hstack([features_value[ 3:5],features_value[ 6:-x_ratios]])]
        #[features_value[:-x_ratios]]
    ]


    from scipy.spatial.transform import Rotation as R
    def flatten_for(lst):
        return [round(item, 3) for sublist in lst for item in sublist]
    def change_euler_order(orderd_array,from_order,to_order,degrees=True):
         r = R.from_euler(from_order,orderd_array,degrees=degrees)
         result = r.as_euler(to_order,degrees=degrees)
         return np.round(result,2).tolist()

    def load_joblib(path):
        if path in cached_models:
            return cached_models[path]
        else:
             model = joblib.load(path)
             cached_models[path] = model
             return model
        
    def estimate(model_path,scaler_path,features_values,multi=True):
        
        scalers = load_joblib("models/"+scaler_path)
        if not isinstance(scalers,list):
            scalers=(scalers,scalers,scalers)
        for i,scaler  in enumerate(scalers):
            #print(i,scaler)
            features_values[i] = scaler.transform(features_values[i].copy())


        result_preds=[]
        models = load_joblib("models/"+model_path)
        
        if multi: 
            for i,model in enumerate(models):
                y_pred = model.predict(features_values[i])
                result_preds.append(y_pred.round(2))
            result_preds=flatten_for(result_preds)    
            yxz =[result_preds[1],result_preds[0],result_preds[2]]
        else:
              result_preds=models.predict(features_values[0])
              result_preds=flatten_for(result_preds)
              #yxz=flatten_for(yxz)
              #yxz =[yxz[1],yxz[0],yxz[2]]
                
        #zyx = change_euler_order(yxz,"yxz","zyx")
        #return [round(zyx[2],2),round(zyx[1],2),round(zyx[0],2)]#
        return result_preds # yxz-orderd x,y,z
    


    
    def estimate2(model_key,features_values):
        model_path=f"models/{model_key}.joblib"
        scaler_path=f"models/{model_key}_scaler.joblib"
        polynomial_path=f"models/{model_key}_polynomial_features.joblib"
        selectkbest_path=f"models/{model_key}_selectkbest.joblib"

        model = load_joblib(model_path)
        scaler = load_joblib(scaler_path)
        polynomial = load_joblib(polynomial_path)
        selectkbest = load_joblib(selectkbest_path)

        result_preds=[]
        for i in range(3):
            x = polynomial[i].transform(features_values[i].copy())
            x = selectkbest[i].transform(x)
            x = scaler[i].transform(x)
            y_pred = model[i].predict(x)
            result_preds.append(y_pred.round(2))
        return result_preds # yxz-orderd x,y,z
    import onnxruntime as ort
    def estimate3(model_key,features_values):
        model_path=f"models/{model_key}.onnx"
        ort_session = ort.InferenceSession(model_path)
       
        #result_preds=[]
        #result_preds=models.predict(features_values[0])
        #result_preds=flatten_for(result_preds)
        input_name = ort_session.get_inputs()[0].name
        input_data = features_values.astype(np.float32)
        result_preds = ort_session.run(None, {input_name: input_data})
        #print((result_preds))
        return result_preds[0] # yxz-orderd x,y,z


    #short_result = estimate('linear-svr-xyz_5.joblib','linear-svr-xyz_5_scaler.joblib',features_values)

    features_value = features_value_origin.copy()
    features_values = [
        [features_value],[features_value],[features_value]
    ]
    #short_result = estimate('lgbm-optimizer_15.joblib','lgbm-optimizer_15_scaler.joblib',features_values.copy())
    short_result = estimate2('hyper-hgr-random15',features_values.copy())

    
   
    
    #middle_result = estimate('lgbm-xyz_90-rand47.joblib','lgbm-xyz_90-rand47_scaler.joblib',features_values.copy())
    middle_result = estimate2('hyper-hgr-random45',features_values.copy())
    
    long_result = estimate2('hyper-hgr-random90',features_values.copy())
    

    e1_key="lgbm-optimizer_15dart_random"
    short_result2a = estimate(f'{e1_key}.joblib',f'{e1_key}_scaler.joblib',features_values.copy())
    e1_key="lgbm-optimizer_15_random"
    short_result2 = estimate(f'{e1_key}.joblib',f'{e1_key}_scaler.joblib',features_values.copy())

    e1_key="lgbm-optimizer_45_random"
    
    middle_result2 = estimate(f'{e1_key}.joblib',f'{e1_key}_scaler.joblib',features_values.copy())
    e1_key="lgbm-optimizer_90_random"
    long_result2 = estimate(f'{e1_key}.joblib',f'{e1_key}_scaler.joblib',features_values.copy())

    e1_key="etr_90"
    long_result3 = estimate(f'{e1_key}.joblib',f'{e1_key}_scaler.joblib',features_values.copy(),False)
    #long_result3 = estimate3(e1_key,np.array([features_value]))#single 
    #long_result3 = flatten_for(long_result3)
    #long_result3 = long_result2
    def average(values):
        flat_values=[]
        for value in values:
             flat_values += [flatten_for(value)]
        #print(np.mean(flat_values,axis=0))

    import average
    data={
         "hgbr-15":flatten_for(short_result),
         "hgbr-45":flatten_for(middle_result),
         "hgbr-90":flatten_for(long_result),
         "lgbm-15dart":(short_result2a),
         "lgbm-15":(short_result2),
         "lgbm-45":(middle_result2),
         "lgbm-90":(long_result2),
    }

    
    stack_x = short_result2a+short_result2+middle_result2+long_result2+flatten_for(short_result)+flatten_for(middle_result)+flatten_for(long_result)+long_result3
    
    #average_data=estimate3("stacking8",np.array([stack_x]))#onnx not 
    average_data=stacking8_model.predict(np.array([stack_x]))
    
    #change order
    
    #all data train with yxz-order x,y,z
    def yxz_xyz_to_yxz(euler):
         return [euler[1],euler[0],euler[2]]
    
    average_data = change_euler_order(yxz_xyz_to_yxz(flatten_for(average_data)),"yxz",order)
    short_result = change_euler_order(yxz_xyz_to_yxz(flatten_for(short_result)),"yxz",order)
    middle_result = change_euler_order(yxz_xyz_to_yxz(flatten_for(middle_result)),"yxz",order)
    long_result = change_euler_order(yxz_xyz_to_yxz(flatten_for(long_result)),"yxz",order)
    short_result2a = change_euler_order(yxz_xyz_to_yxz(short_result2a),"yxz",order)
    short_result2 = change_euler_order(yxz_xyz_to_yxz(short_result2),"yxz",order)
    middle_result2 = change_euler_order(yxz_xyz_to_yxz(middle_result2),"yxz",order)
    long_result2 = change_euler_order(yxz_xyz_to_yxz(long_result2),"yxz",order)
    long_result3 = change_euler_order(yxz_xyz_to_yxz(long_result3),"yxz",order)

    #print(data)
    #average_data=average.analyze_3d_data(data.values())
    #print(average_data)
    #average((short_result,middle_result,long_result,short_result2a,short_result2,middle_result2,long_result2))
    return average_data,short_result,middle_result,long_result,(short_result2a),(short_result2),(middle_result2),(long_result2),long_result3
    #return average_data['trimmed_mean'],flatten_for(short_result),flatten_for(middle_result),flatten_for(long_result),(short_result2a),(short_result2),(middle_result2),(long_result2)

css="""
#col-left {
    margin: 0 auto;
    max-width: 640px;
}
#col-right {
    margin: 0 auto;
    max-width: 640px;
}
.grid-container {
  display: flex;
  align-items: center;
  justify-content: center;
  gap:10px
}

.image {
  width: 128px; 
  height: 128px; 
  object-fit: cover; 
}

.text {
  font-size: 16px;
}
"""

#css=css,



with gr.Blocks(css=css, elem_id="demo-container") as demo:
    with gr.Column():
        gr.HTML(read_file("demo_header.html"))
        gr.HTML(read_file("demo_tools.html"))
    with gr.Row():
                with gr.Column():
                    image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB',elem_id="image_upload", type="pil", label="Image")
                    
                    with gr.Row(elem_id="prompt-container",  equal_height=False):
                        with gr.Row():
                            btn = gr.Button("Head-Pose Estimate", elem_id="run_button",variant="primary")
                            order = gr.Dropdown(label="Order",value="xyz",choices=["xyz","xzy","yxz","yzx","zxy","zyx"],info="returened array order is same as label")
                            
                    
                        
                    with gr.Accordion(label="Advanced Settings", open=True):
                        #need better landmarker
                        base_image = gr.Image(sources=['upload','clipboard'],image_mode='RGB',elem_id="image_upload", type="pil", label="Image",visible=False)
                       
                        with gr.Row( equal_height=True):
                            
                            double_check = gr.Checkbox(label="Double Check",value=True,info="move center-index and detect again(usually more accurate).recommend choose 195") 
                            center_index = gr.Slider(info="center-index",
                            label="Center-index",
                            minimum=0,
                            maximum=467,
                            step=1,
                            value=195)
                            z_multiply = gr.Slider(info="nose height",
                            label="Depth-Multiply",
                            minimum=0.1,
                            maximum=1.5,
                            step=0.01,
                            value=0.8)
                        
                        with gr.Row( equal_height=True):      
                            draw_mediapipe_mesh = gr.Checkbox(label="Draw mediapipe mesh",value=True)
                            draw_mediapipe_angle = gr.Checkbox(label="Draw mediapipe angle(green)",value=True)
                        with gr.Row( equal_height=True):
                            draw_hozizontal_line = gr.Checkbox(label="Draw horizontal line(red)",value=True)
                            draw_vertical_line = gr.Checkbox(label="Draw vertical line(blue)",value=True)
                            draw_faceratio_line = gr.Checkbox(label="Draw Face-Ratio line(blue)",value=False)
                                         
                with gr.Column():
                    result_image = gr.Image(height=760,label="Result", elem_id="output-animation",image_mode='RGB')
                    with gr.Row( equal_height=True):
                        mediapipe_last_text = gr.Textbox(label=f"2nd or last mediapipe result",)
                        mediapipe_first_text = gr.Textbox(label=f"first mediapipe result")
                    
                    with gr.Row( equal_height=True):
                        z_angle_text = gr.Textbox(label="Z angle by horizontal-line",info="start with 0,exactly Z-Angle")
                        y_ratio_text = gr.Textbox(label="Y Left-Right length ratio",info="start 0.49-0.51")
                        x_ratio_text = gr.Textbox(label="X Up-down length ratio",info="start near 0.49,look at nose-hole-shape")
                    with gr.Accordion(label="Angle Ratio Details", open=False):
                        with gr.Row( equal_height=True):
                            z_angle_detail_text = gr.TextArea(label="Z-angle detail")
                            y_ratio_detail = gr.TextArea(label="Y-ratio detail")
                            x_ratio_detail = gr.TextArea(label="X-ratio detail",value="")
                    with gr.Row( equal_height=True):
                        face_ratio_info = gr.Text(label="Face Ratio",info="Average philtrum:1.82(std 0.13),straight:0.82(std 0.04),face:0.91(std 0.02),r-eyes:0.86(std 0.03),r-contour:0.77(std 0.05),l-eyes:0.86(std 0.03),l-contour:0.75(std 0.05),lips:1.43(std 0.16),mouth-eye:1.21(std 0.07)")
                    gr.HTML("<h5>For Rotation sometime differenct to mediapipe's result</h5>")
                    with gr.Row( equal_height=True):  
                        bt_test = gr.Button("Estimate by Models")
                        average_result = gr.Text(label="stacking")
                    gr.HTML("<p>number is max training angle,usually stacking is works well.slow because of etr</p>")  
                    with gr.Row( equal_height=True):  
                            short_result = gr.Text(label="hgbr-15")
                            middle_result = gr.Text(label="hgbr-45")
                            long_result = gr.Text(label="hgbr-90")
                            long_result3 = gr.Text(label="etr-90")
                    with gr.Row( equal_height=True):  
                            short_result2a = gr.Text(label="lgbm-15dart")
                            short_result2 = gr.Text(label="lgbm-15")
                            middle_result2 = gr.Text(label="lgbm-45")
                            long_result2 = gr.Text(label="lgbm-90")
                            #,
                            bt_test.click(fn=find_angles,inputs=[image,order],outputs=[average_result,short_result,middle_result,long_result,short_result2a,short_result2,middle_result2,long_result2,long_result3])

    btn.click(fn=process_images, inputs=[image,base_image,order,
                                         double_check,center_index,
                                         draw_mediapipe_mesh,z_multiply,draw_mediapipe_angle,draw_hozizontal_line,draw_vertical_line,draw_faceratio_line,
                                         ],outputs=[result_image,mediapipe_first_text,mediapipe_last_text,z_angle_text,y_ratio_text,x_ratio_text,z_angle_detail_text,y_ratio_detail,x_ratio_detail,face_ratio_info] ,api_name='infer')
   
    example_images = [
                     ["examples/02316230.jpg"],
                    ["examples/00003245_00.jpg"],
                   ["examples/00827009.jpg"],
                     ["examples/00002062.jpg"],
                    ["examples/00824008.jpg"],
                    ["examples/00825000.jpg"],
                    ["examples/00826007.jpg"],
                     ["examples/00824006.jpg"],
                    ["examples/00828003.jpg"],
                     ["examples/00002200.jpg"],
                    ["examples/00005259.jpg"],
                    ["examples/00018022.jpg"],
                    ["examples/img-above.jpg"],
                     ["examples/00100265.jpg"],
                      ["examples/00039259.jpg"],
                     
                ]
    example1=gr.Examples(
                examples = example_images,label="Image",
                inputs=[image],examples_per_page=8
    )
    gr.HTML(read_file("demo_footer.html"))

    if __name__ == "__main__":
        demo.launch()