File size: 27,279 Bytes
661ec13 4c7255e 661ec13 4c7255e 661ec13 5bcba47 661ec13 ff3c171 4c7255e 661ec13 4c7255e 661ec13 4c7255e 661ec13 4c7255e 661ec13 4c7255e 661ec13 4c7255e 661ec13 4c7255e 661ec13 4c7255e 661ec13 4c7255e 661ec13 4c7255e 661ec13 4c7255e 661ec13 4c7255e ff3c171 4c7255e ff3c171 4c7255e 661ec13 4c7255e 661ec13 4c7255e 661ec13 4c7255e 661ec13 4c7255e 661ec13 4c7255e 661ec13 4c7255e 661ec13 ff3c171 661ec13 4c7255e 661ec13 4c7255e 661ec13 4c7255e ff3c171 4c7255e 661ec13 ff3c171 661ec13 ff3c171 4c7255e 661ec13 4c7255e 661ec13 4c7255e ff3c171 4c7255e ff3c171 4c7255e 661ec13 4c7255e ff3c171 4c7255e ff3c171 4c7255e ff3c171 4c7255e ff3c171 4c7255e ff3c171 4c7255e ff3c171 4c7255e ff3c171 4c7255e ff3c171 4c7255e ff3c171 4c7255e 661ec13 4c7255e 661ec13 4c7255e 661ec13 4c7255e ff3c171 4c7255e ff3c171 4c7255e ff3c171 4c7255e ff3c171 4c7255e ff3c171 4c7255e ff3c171 661ec13 4c7255e ff3c171 661ec13 4c7255e ff3c171 4c7255e 661ec13 4c7255e 661ec13 4c7255e ff3c171 4c7255e ff3c171 4c7255e ff3c171 4c7255e ff3c171 661ec13 ff3c171 4c7255e 661ec13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 |
import spaces
import gradio as gr
import subprocess
from PIL import Image,ImageOps,ImageDraw,ImageFilter
import json
import os
import time
import mp_box
from mp_estimate import ratios_cordinates,estimate_horizontal,estimate_vertical,mean_std_label,normalized_to_pixel,get_feature_angles_cordinate,create_detail_labels,get_feature_ratios_cordinate
from mp_utils import get_pixel_cordinate_list,extract_landmark,get_pixel_cordinate,get_pixel_xyz,get_normalized_landmarks
from glibvision.draw_utils import points_to_box,box_to_xy,plus_point
from glibvision.cv2_utils import plot_points,create_color_image,pil_to_bgr_image,set_plot_text,copy_image
from glibvision.numpy_utils import rotate_point_euler,load_data
from gradio_utils import save_image,save_buffer,clear_old_files ,read_file
import cv2
#from cv2_pose_estimate import draw_head_pose
import numpy as np
from numpy.typing import NDArray
'''
innner_eyes_blur - inner eyes blur
iris_mask_blur - final iris edge blur
'''
def process_images(image,base_image,order,
double_check_offset_center,center_index,
draw_mediapipe_mesh,z_multiply=0.8,draw_mediapipe_angle=False,draw_hozizontal_line=False,draw_vertical_line=False,draw_faceratio_line=False,
progress=gr.Progress(track_tqdm=True)):
clear_old_files()
"""
image_indices = [4,199,#6,#center of eye
133,362,#inner eye
33,263, #outer eye
61,291]#mouth
"""
def landmarks_to_model_corsinates(face_landmarks,indices,w,h):
cordinates = []
z_depth = w if w<h else h
z_depth *=z_multiply
for index in indices:
xyz = get_pixel_xyz(face_landmarker_result.face_landmarks,index,w,h)
#print(xyz,xyz[2]*z_multiply) #TODO chose?
cordinates.append([
xyz[0],xyz[1],xyz[2]*z_depth
])
return cordinates
if image == None:
raise gr.Error("Need Image")
cv2_image = pil_to_bgr_image(image)
size = cv2_image.shape
center: tuple[float, float] = (size[1] / 2, size[0] / 2)
import math
def calculate_distance(xy, xy2):
return math.sqrt((xy2[0] - xy[0])**2 + (xy2[1] - xy[1])**2)
mp_image,face_landmarker_result = extract_landmark(cv2_image,"face_landmarker.task",0,0,True)
im = mp_image.numpy_view()
h,w = im.shape[:2]
first_landmarker_result = None
def get_first_landmarker_result():
if first_landmarker_result:
return first_landmarker_result
else:
return face_landmarker_result
first_translation_vector = None
if double_check_offset_center:
root_cordinate = get_pixel_cordinate(face_landmarker_result.face_landmarks,center_index,w,h)#nose tip
diff_center_x = center[0] - root_cordinate[0]
diff_center_y = center[1] - root_cordinate[1]
base = np.zeros_like(cv2_image)
copy_image(base,cv2_image,diff_center_x,diff_center_y)
#cv2.imwrite("center.jpg",base)
first_landmarker_result = face_landmarker_result
mp_image,face_landmarker_result = extract_landmark(base,"face_landmarker.task",0,0,True)
im = mp_image.numpy_view()
transformation_matrix=first_landmarker_result.facial_transformation_matrixes[0]
rotation_matrix, first_translation_vector = transformation_matrix[:3, :3],transformation_matrix[:3, 3]
else:
diff_center_x=0
diff_center_y=0
#return base,"",""
#cordinates = get_pixel_cordinate_list(face_landmarker_result.face_landmarks,image_indices,w,h)
if draw_mediapipe_mesh:
result = first_landmarker_result
if result == None:
result = face_landmarker_result
image = mp_box.draw_landmarks_on_image(result,image)
cv2_image = pil_to_bgr_image(image)#here must be bug,but somehow working
# draw lines
#x_ratios = []
z_angles,y_ratios,h_cordinates,_ = estimate_horizontal(get_first_landmarker_result().face_landmarks)
if draw_hozizontal_line:
for cordinates in h_cordinates:
#print(cordinates)
points = normalized_to_pixel(cordinates,w,h)
#print(points)
plot_points(cv2_image,points[:2],False,5,(255,0,0),3)#last one is middle point on horizontal
_,x_ratios,v_cordinates,_ = estimate_vertical(get_first_landmarker_result().face_landmarks)
if draw_vertical_line:
for cordinates in v_cordinates:
plot_points(cv2_image,normalized_to_pixel(cordinates,w,h),False,5,(0,0,255),3,(255,0,0))#second one is middle point on vertical
#these are for training feature
key_cordinates,angles = get_feature_angles_cordinate(get_first_landmarker_result().face_landmarks)
for cordinates in key_cordinates:
pass
#plot_points(cv2_image,normalized_to_pixel(cordinates,w,h),False,5,(0,0,255),3,(255,0,0))
key_cordinates,angles = get_feature_ratios_cordinate(get_first_landmarker_result().face_landmarks)
for cordinates in key_cordinates:
pass
#plot_points(cv2_image,normalized_to_pixel(cordinates,w,h),False,5,(0,0,255),3,(255,0,0))
z_angle_text = mean_std_label(z_angles,True)
y_ratio_text = mean_std_label(y_ratios)
x_ratio_text = mean_std_label(x_ratios)
z_angle_detail = create_detail_labels(z_angles,True)
y_ratio_detail = create_detail_labels(y_ratios)
x_ratio_detail = f"forehead-chin = {np.mean(x_ratios)}"
focal_length: float = calculate_distance(cordinates[0],cordinates[1])
focal_length = focal_length*1
camera_matrix: NDArray = np.array([
[focal_length, 0, center[0]],
[0, -focal_length, center[1]],
[0, 0, 1]
], dtype="double")
dist_coeffs: NDArray = np.zeros((4, 1))
# offset center usually improve result
image_points: NDArray = np.array(cordinates, dtype="double")
from scipy.spatial.transform import Rotation as R
def print_euler(rotation_vector,label=""):
order = "yxz"
rotation_matrix, _ = cv2.Rodrigues(rotation_vector)
r = R.from_matrix(rotation_matrix)
euler_angles = r.as_euler(order, degrees=True)
label = f"{label} Euler Angles {order} (degrees): {euler_angles}"
return label
rotation_vector = None
translation_vector = None
im_with_pose = cv2_image
mediapipe_text = None
def face_landmarker_result_to_angle_label(face_landmarker_result,order="yxz"):
if len(face_landmarker_result.facial_transformation_matrixes)>0:
transformation_matrix=face_landmarker_result.facial_transformation_matrixes[0]
rotation_matrix, translation_vector = transformation_matrix[:3, :3],transformation_matrix[:3, 3]
#TODO change base-size
vector_multiply=10
scaled_translation_vector =(translation_vector[0]*vector_multiply,translation_vector[1]*vector_multiply,translation_vector[2]*vector_multiply)
#scaled_translation_vector = (-512,-512,-1024)
#im_with_pose = draw_head_pose(im_with_pose, image_points, rotation_matrix, scaled_translation_vector, camera_matrix, dist_coeffs,32,-diff_center_x,-diff_center_y)
#print("mediapipe",scaled_translation_vector)
#mediapipe_label = print_euler(rotation_vector,"MediaPipe")
r = R.from_matrix(rotation_matrix)
euler_angles = r.as_euler(order, degrees=True)
#label = f"Media pipe {order}-Euler Angles [x,y,z] (degrees): [{euler_angles[1]:.2f},{euler_angles[0]:.2f},{euler_angles[2]:.2f}]"
label = f"[{order[0]}:{euler_angles[0]:.2f},{order[1]}:{-euler_angles[1]:.2f},{order[2]}:{-euler_angles[2]:.2f}]"
return label,rotation_matrix,scaled_translation_vector
if first_landmarker_result != None:
mediapipe_first_text,_,_ = face_landmarker_result_to_angle_label(first_landmarker_result,order)
else:
mediapipe_first_text = ""
mediapipe_second_text,rotation_matrix,scaled_translation_vector = face_landmarker_result_to_angle_label(face_landmarker_result,order)
rotation_vector, _ = cv2.Rodrigues(rotation_matrix)
translation_vector = scaled_translation_vector
#if first_translation_vector.all():
# translation_vector = first_translation_vector
#im_with_pose = draw_head_pose(im_with_pose, image_points, rotation_vector, translation_vector, camera_matrix, dist_coeffs,255,-diff_center_x,-diff_center_y)
# mediapipe metrix
#print("opencv",translation_vector)
if draw_mediapipe_angle:
root_cordinate = get_pixel_xyz(get_first_landmarker_result().face_landmarks,4,w,h)
r = R.from_matrix(rotation_matrix)
euler_angles = r.as_euler("yxz", degrees=False)
#print(r.as_euler("yxz", degrees=True))
draw_cordinate1=rotate_point_euler((0,0,-100),[-euler_angles[1],euler_angles[0],euler_angles[2]],"yxz")
draw_cordinate2=rotate_point_euler((0,0,-200),[-euler_angles[1],euler_angles[0],euler_angles[2]],"yxz")
plot_points(im_with_pose,[root_cordinate[:2]+draw_cordinate1[:2],root_cordinate[:2]+draw_cordinate2[:2],root_cordinate[:2]],False,5,(0,128,0),3,(0,255,0))
#analyze face ratios
landmarks = get_normalized_landmarks(get_first_landmarker_result().face_landmarks)
face_ratio_infos = []
#print("landmark",[landmarks[37],landmarks[267]])
#print("numpy",np.array([landmarks[37],landmarks[267]]))
#print("mean",np.mean(np.array([landmarks[37],landmarks[267]]),axis=0))
v_cordinates=[
["philtrum",landmarks[175],landmarks[13],np.mean((landmarks[164],landmarks[2]),axis=0).tolist()],
["straight",landmarks[175],landmarks[94],landmarks[9]],
["face",landmarks[175],landmarks[9],landmarks[127],landmarks[356]],
["r-eyes",landmarks[33],landmarks[190],landmarks[414]],
["r-contour",landmarks[127],landmarks[33],landmarks[190]],
["l-eyes",landmarks[263],landmarks[414],landmarks[190]],
["l-contour",landmarks[356],landmarks[263],landmarks[414]],
["lips",landmarks[17],landmarks[13],np.mean((landmarks[37],landmarks[267]),axis=0).tolist()],
["mouth-eye",landmarks[61],landmarks[291],landmarks[133],landmarks[362]],
]
for cordinates in v_cordinates:
ratio=ratios_cordinates(cordinates[1:])
if draw_faceratio_line:
plot_points(cv2_image,normalized_to_pixel(cordinates[1:],w,h),False,5,(0,255,255),3,(255,255,0))
label = f"{cordinates[0]}:{ratio:.2f}"
face_ratio_infos.append(label)
face_ratio_info=",".join(face_ratio_infos)
return cv2.cvtColor(im_with_pose,cv2.COLOR_BGR2RGB),mediapipe_first_text,mediapipe_second_text,z_angle_text,y_ratio_text,x_ratio_text,z_angle_detail,y_ratio_detail,x_ratio_detail,face_ratio_info
#deprecated
def find_nearest_weighted_euclidean_2d(target_angles_full, all_angles_full, weights):
target_angles = target_angles_full[:5] # 最初の3つの角度を使用
all_angles = all_angles_full[:, :5] # 最初の3列を使用
weighted_diff = (all_angles - target_angles) * weights
distances = np.linalg.norm(weighted_diff, axis=1)
nearest_index = np.argmin(distances)
return nearest_index, all_angles_full[nearest_index]
import math
from mp_estimate import estimate_horizontal_points ,estimate_vertical_points,estimate_rotations_v2
import joblib
stacking8_model = joblib.load(f"models/stacking8.joblib")
cached_models = {}
def find_angles(image,order):
if image is None:
raise gr.Error("need image")
cv2_image = pil_to_bgr_image(image)
size = cv2_image.shape
mp_image,face_landmarker_result = extract_landmark(cv2_image,"face_landmarker.task",0,0,True)
features_text = estimate_rotations_v2(face_landmarker_result)
features_value_origin = [float(value) for value in features_text.split(",")]
features_value = features_value_origin.copy()
print("features x-angle",math.degrees(features_value[3])-90)
#print(features_value)
#weights = np.array([0.2, 0.2,0.3,0.3])
#index,matched = find_nearest_weighted_euclidean_2d(target_angles,all_angles,weights)
#index,matched = find_nearest_euclidean_2d(target_angles,all_angles)
#formatted_arr = [np.format_float_positional(x) for x in matched]
#print(formatted_arr)
x_ratios = 11 #magic vertical ratios
#short
features_values = [
[np.add(features_value[-x_ratios:],features_value[0:1])],
[features_value[:-x_ratios]],
[np.hstack([features_value[ 3:5],features_value[ 6:-x_ratios]])]
#[features_value[:-x_ratios]]
]
from scipy.spatial.transform import Rotation as R
def flatten_for(lst):
return [round(item, 3) for sublist in lst for item in sublist]
def change_euler_order(orderd_array,from_order,to_order,degrees=True):
r = R.from_euler(from_order,orderd_array,degrees=degrees)
result = r.as_euler(to_order,degrees=degrees)
return np.round(result,2).tolist()
def load_joblib(path):
if path in cached_models:
return cached_models[path]
else:
model = joblib.load(path)
cached_models[path] = model
return model
def estimate(model_path,scaler_path,features_values,multi=True):
scalers = load_joblib("models/"+scaler_path)
if not isinstance(scalers,list):
scalers=(scalers,scalers,scalers)
for i,scaler in enumerate(scalers):
#print(i,scaler)
features_values[i] = scaler.transform(features_values[i].copy())
result_preds=[]
models = load_joblib("models/"+model_path)
if multi:
for i,model in enumerate(models):
y_pred = model.predict(features_values[i])
result_preds.append(y_pred.round(2))
result_preds=flatten_for(result_preds)
yxz =[result_preds[1],result_preds[0],result_preds[2]]
else:
result_preds=models.predict(features_values[0])
result_preds=flatten_for(result_preds)
#yxz=flatten_for(yxz)
#yxz =[yxz[1],yxz[0],yxz[2]]
#zyx = change_euler_order(yxz,"yxz","zyx")
#return [round(zyx[2],2),round(zyx[1],2),round(zyx[0],2)]#
return result_preds # yxz-orderd x,y,z
def estimate2(model_key,features_values):
model_path=f"models/{model_key}.joblib"
scaler_path=f"models/{model_key}_scaler.joblib"
polynomial_path=f"models/{model_key}_polynomial_features.joblib"
selectkbest_path=f"models/{model_key}_selectkbest.joblib"
model = load_joblib(model_path)
scaler = load_joblib(scaler_path)
polynomial = load_joblib(polynomial_path)
selectkbest = load_joblib(selectkbest_path)
result_preds=[]
for i in range(3):
x = polynomial[i].transform(features_values[i].copy())
x = selectkbest[i].transform(x)
x = scaler[i].transform(x)
y_pred = model[i].predict(x)
result_preds.append(y_pred.round(2))
return result_preds # yxz-orderd x,y,z
import onnxruntime as ort
def estimate3(model_key,features_values):
model_path=f"models/{model_key}.onnx"
ort_session = ort.InferenceSession(model_path)
#result_preds=[]
#result_preds=models.predict(features_values[0])
#result_preds=flatten_for(result_preds)
input_name = ort_session.get_inputs()[0].name
input_data = features_values.astype(np.float32)
result_preds = ort_session.run(None, {input_name: input_data})
#print((result_preds))
return result_preds[0] # yxz-orderd x,y,z
#short_result = estimate('linear-svr-xyz_5.joblib','linear-svr-xyz_5_scaler.joblib',features_values)
features_value = features_value_origin.copy()
features_values = [
[features_value],[features_value],[features_value]
]
#short_result = estimate('lgbm-optimizer_15.joblib','lgbm-optimizer_15_scaler.joblib',features_values.copy())
short_result = estimate2('hyper-hgr-random15',features_values.copy())
#middle_result = estimate('lgbm-xyz_90-rand47.joblib','lgbm-xyz_90-rand47_scaler.joblib',features_values.copy())
middle_result = estimate2('hyper-hgr-random45',features_values.copy())
long_result = estimate2('hyper-hgr-random90',features_values.copy())
e1_key="lgbm-optimizer_15dart_random"
short_result2a = estimate(f'{e1_key}.joblib',f'{e1_key}_scaler.joblib',features_values.copy())
e1_key="lgbm-optimizer_15_random"
short_result2 = estimate(f'{e1_key}.joblib',f'{e1_key}_scaler.joblib',features_values.copy())
e1_key="lgbm-optimizer_45_random"
middle_result2 = estimate(f'{e1_key}.joblib',f'{e1_key}_scaler.joblib',features_values.copy())
e1_key="lgbm-optimizer_90_random"
long_result2 = estimate(f'{e1_key}.joblib',f'{e1_key}_scaler.joblib',features_values.copy())
e1_key="etr_90"
long_result3 = estimate(f'{e1_key}.joblib',f'{e1_key}_scaler.joblib',features_values.copy(),False)
#long_result3 = estimate3(e1_key,np.array([features_value]))#single
#long_result3 = flatten_for(long_result3)
#long_result3 = long_result2
def average(values):
flat_values=[]
for value in values:
flat_values += [flatten_for(value)]
#print(np.mean(flat_values,axis=0))
import average
data={
"hgbr-15":flatten_for(short_result),
"hgbr-45":flatten_for(middle_result),
"hgbr-90":flatten_for(long_result),
"lgbm-15dart":(short_result2a),
"lgbm-15":(short_result2),
"lgbm-45":(middle_result2),
"lgbm-90":(long_result2),
}
stack_x = short_result2a+short_result2+middle_result2+long_result2+flatten_for(short_result)+flatten_for(middle_result)+flatten_for(long_result)+long_result3
#average_data=estimate3("stacking8",np.array([stack_x]))#onnx not
average_data=stacking8_model.predict(np.array([stack_x]))
#change order
#all data train with yxz-order x,y,z
def yxz_xyz_to_yxz(euler):
return [euler[1],euler[0],euler[2]]
average_data = change_euler_order(yxz_xyz_to_yxz(flatten_for(average_data)),"yxz",order)
short_result = change_euler_order(yxz_xyz_to_yxz(flatten_for(short_result)),"yxz",order)
middle_result = change_euler_order(yxz_xyz_to_yxz(flatten_for(middle_result)),"yxz",order)
long_result = change_euler_order(yxz_xyz_to_yxz(flatten_for(long_result)),"yxz",order)
short_result2a = change_euler_order(yxz_xyz_to_yxz(short_result2a),"yxz",order)
short_result2 = change_euler_order(yxz_xyz_to_yxz(short_result2),"yxz",order)
middle_result2 = change_euler_order(yxz_xyz_to_yxz(middle_result2),"yxz",order)
long_result2 = change_euler_order(yxz_xyz_to_yxz(long_result2),"yxz",order)
long_result3 = change_euler_order(yxz_xyz_to_yxz(long_result3),"yxz",order)
#print(data)
#average_data=average.analyze_3d_data(data.values())
#print(average_data)
#average((short_result,middle_result,long_result,short_result2a,short_result2,middle_result2,long_result2))
return average_data,short_result,middle_result,long_result,(short_result2a),(short_result2),(middle_result2),(long_result2),long_result3
#return average_data['trimmed_mean'],flatten_for(short_result),flatten_for(middle_result),flatten_for(long_result),(short_result2a),(short_result2),(middle_result2),(long_result2)
css="""
#col-left {
margin: 0 auto;
max-width: 640px;
}
#col-right {
margin: 0 auto;
max-width: 640px;
}
.grid-container {
display: flex;
align-items: center;
justify-content: center;
gap:10px
}
.image {
width: 128px;
height: 128px;
object-fit: cover;
}
.text {
font-size: 16px;
}
"""
#css=css,
with gr.Blocks(css=css, elem_id="demo-container") as demo:
with gr.Column():
gr.HTML(read_file("demo_header.html"))
gr.HTML(read_file("demo_tools.html"))
with gr.Row():
with gr.Column():
image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB',elem_id="image_upload", type="pil", label="Image")
with gr.Row(elem_id="prompt-container", equal_height=False):
with gr.Row():
btn = gr.Button("Head-Pose Estimate", elem_id="run_button",variant="primary")
order = gr.Dropdown(label="Order",value="xyz",choices=["xyz","xzy","yxz","yzx","zxy","zyx"],info="returened array order is same as label")
with gr.Accordion(label="Advanced Settings", open=True):
#need better landmarker
base_image = gr.Image(sources=['upload','clipboard'],image_mode='RGB',elem_id="image_upload", type="pil", label="Image",visible=False)
with gr.Row( equal_height=True):
double_check = gr.Checkbox(label="Double Check",value=True,info="move center-index and detect again(usually more accurate).recommend choose 195")
center_index = gr.Slider(info="center-index",
label="Center-index",
minimum=0,
maximum=467,
step=1,
value=195)
z_multiply = gr.Slider(info="nose height",
label="Depth-Multiply",
minimum=0.1,
maximum=1.5,
step=0.01,
value=0.8)
with gr.Row( equal_height=True):
draw_mediapipe_mesh = gr.Checkbox(label="Draw mediapipe mesh",value=True)
draw_mediapipe_angle = gr.Checkbox(label="Draw mediapipe angle(green)",value=True)
with gr.Row( equal_height=True):
draw_hozizontal_line = gr.Checkbox(label="Draw horizontal line(red)",value=True)
draw_vertical_line = gr.Checkbox(label="Draw vertical line(blue)",value=True)
draw_faceratio_line = gr.Checkbox(label="Draw Face-Ratio line(blue)",value=False)
with gr.Column():
result_image = gr.Image(height=760,label="Result", elem_id="output-animation",image_mode='RGB')
with gr.Row( equal_height=True):
mediapipe_last_text = gr.Textbox(label=f"2nd or last mediapipe result",)
mediapipe_first_text = gr.Textbox(label=f"first mediapipe result")
with gr.Row( equal_height=True):
z_angle_text = gr.Textbox(label="Z angle by horizontal-line",info="start with 0,exactly Z-Angle")
y_ratio_text = gr.Textbox(label="Y Left-Right length ratio",info="start 0.49-0.51")
x_ratio_text = gr.Textbox(label="X Up-down length ratio",info="start near 0.49,look at nose-hole-shape")
with gr.Accordion(label="Angle Ratio Details", open=False):
with gr.Row( equal_height=True):
z_angle_detail_text = gr.TextArea(label="Z-angle detail")
y_ratio_detail = gr.TextArea(label="Y-ratio detail")
x_ratio_detail = gr.TextArea(label="X-ratio detail",value="")
with gr.Row( equal_height=True):
face_ratio_info = gr.Text(label="Face Ratio",info="Average philtrum:1.82(std 0.13),straight:0.82(std 0.04),face:0.91(std 0.02),r-eyes:0.86(std 0.03),r-contour:0.77(std 0.05),l-eyes:0.86(std 0.03),l-contour:0.75(std 0.05),lips:1.43(std 0.16),mouth-eye:1.21(std 0.07)")
gr.HTML("<h5>For Rotation sometime differenct to mediapipe's result</h5>")
with gr.Row( equal_height=True):
bt_test = gr.Button("Estimate by Models")
average_result = gr.Text(label="stacking")
gr.HTML("<p>number is max training angle,usually stacking is works well.slow because of etr</p>")
with gr.Row( equal_height=True):
short_result = gr.Text(label="hgbr-15")
middle_result = gr.Text(label="hgbr-45")
long_result = gr.Text(label="hgbr-90")
long_result3 = gr.Text(label="etr-90")
with gr.Row( equal_height=True):
short_result2a = gr.Text(label="lgbm-15dart")
short_result2 = gr.Text(label="lgbm-15")
middle_result2 = gr.Text(label="lgbm-45")
long_result2 = gr.Text(label="lgbm-90")
#,
bt_test.click(fn=find_angles,inputs=[image,order],outputs=[average_result,short_result,middle_result,long_result,short_result2a,short_result2,middle_result2,long_result2,long_result3])
btn.click(fn=process_images, inputs=[image,base_image,order,
double_check,center_index,
draw_mediapipe_mesh,z_multiply,draw_mediapipe_angle,draw_hozizontal_line,draw_vertical_line,draw_faceratio_line,
],outputs=[result_image,mediapipe_first_text,mediapipe_last_text,z_angle_text,y_ratio_text,x_ratio_text,z_angle_detail_text,y_ratio_detail,x_ratio_detail,face_ratio_info] ,api_name='infer')
example_images = [
["examples/02316230.jpg"],
["examples/00003245_00.jpg"],
["examples/00827009.jpg"],
["examples/00002062.jpg"],
["examples/00824008.jpg"],
["examples/00825000.jpg"],
["examples/00826007.jpg"],
["examples/00824006.jpg"],
["examples/00828003.jpg"],
["examples/00002200.jpg"],
["examples/00005259.jpg"],
["examples/00018022.jpg"],
["examples/img-above.jpg"],
["examples/00100265.jpg"],
["examples/00039259.jpg"],
]
example1=gr.Examples(
examples = example_images,label="Image",
inputs=[image],examples_per_page=8
)
gr.HTML(read_file("demo_footer.html"))
if __name__ == "__main__":
demo.launch()
|