File size: 10,227 Bytes
661ec13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import cv2
import numpy as np
from numpy.typing import NDArray
import sys
from mp_utils import get_pixel_cordinate_list,extract_landmark
def estimate_head_pose(im: NDArray, model_points: NDArray, image_points,camera_matrix: NDArray, dist_coeffs: NDArray,flags = cv2.SOLVEPNP_ITERATIVE,rotation_vector=None,translation_vector=None) -> tuple[NDArray, NDArray]:
    """
    Estimates the head pose from an image.

    Args:
        image_path: Path to the image file.
        model_points: 3D model points.
        camera_matrix: Camera intrinsic matrix.
        dist_coeffs: Lens distortion coefficients.

    Returns:
        rotation_vector: Estimated rotation vector.
        translation_vector: Estimated translation vector.
    """
    size = im.shape

    '''
    image_points: NDArray = np.array([
        (359, 391),  # Nose tip
        (399, 561),  # Chin
        (337, 297),  # Left eye left corner
        (513, 301),  # Right eye right corne
        (345, 465),  # Left Mouth corner
        (453, 469)  # Right mouth corner
    ], dtype="double")
'''

    model_points = model_points +500
    (success, rotation_vector, translation_vector) = cv2.solvePnP(
        model_points, image_points, camera_matrix, dist_coeffs,flags=flags,
    )
    print(model_points)
    print(image_points)
    print(camera_matrix)

    if not success:
        raise RuntimeError("solvePnP failed.")

    return rotation_vector, translation_vector

import cv2
import numpy as np
from numpy.typing import NDArray

def draw_head_pose(image: NDArray, image_points: NDArray, rotation_vector: NDArray, translation_vector: NDArray, camera_matrix: NDArray, dist_coeffs: NDArray,color_max=255,offset_x=0,offset_y=0) -> NDArray:
    """
    Draws the head pose (XYZ axes) on the image.

    Args:
        image: Input image.
        image_points: 2D image points.
        rotation_vector: Estimated rotation vector.
        translation_vector: Estimated translation vector.
        camera_matrix: Camera intrinsic matrix.
        dist_coeffs: Lens distortion coefficients.

    Returns:
        Image with head pose drawn.
    """

    # Define the 3D points for the XYZ axes
    axis_length = 500.0  # Length of the axes
    axis_points_3D: NDArray = np.array([
        [0, 0, 0],      # Origin
        [axis_length, 0, 0],  # X axis
        [0, axis_length, 0],  # Y axis
        [0, 0, axis_length]   # Z axis
    ], dtype='float32')

    # Project the 3D points to the 2D image plane
    (axis_points_2D, _) = cv2.projectPoints(
        axis_points_3D, rotation_vector, translation_vector, camera_matrix, dist_coeffs
    )
    axis_points_2D = axis_points_2D.astype(int)

    # Draw the axes on the image
    origin = tuple(axis_points_2D[0].ravel())
    cv2.line(image, origin, tuple(axis_points_2D[1].ravel()), (0, 0, color_max), 3)  # X axis (Red)
    cv2.line(image, origin, tuple(axis_points_2D[2].ravel()), (0, color_max, 0), 3)  # Y axis (Green)
    cv2.line(image, origin, tuple(axis_points_2D[3].ravel()), (color_max, 0, 0), 3)  # Z axis (Blue)

    for p in image_points:
        cv2.circle(image, (int(p[0]+offset_x), int(p[1]+offset_y)), 3, (0, 0, 255), -1)

    return image

def main():
    # 3D model points.
    '''
     model_points: NDArray = np.array([
        (0.0, 0.0, 0.0),  # Nose tip
        (0.0, 300.0, -65.0),  # Chin
        (-225.0, -170.0, -135.0),  # Left eye left corner
        (225.0, -170.0, -135.0),  # Right eye right corne
        (-150.0, -150.0, -125.0),  # Left Mouth corner
        (150.0, -150.0, -125.0)  # Right mouth corner
    ])
    '''
    
    model_points: NDArray = np.array([
        (0.0, 0.0, 0.0),  # Nose tip
        (0.0, -344.0, -40.0),  # Chin
        #(0.0, -160.0, -50.0),#center of eye
        (-110.0, 215.0, -60.0),  #inner Left eye left corner
        (110.0, 215.0, -60.0),  #inner Right eye right corne
        (-300.0, 250.0, -90.0),  # Left eye left corner
        (300.0, 250.0, -90.0),  # Right eye right corne
        (-185.0, -180.0, -70.0),  # Left Mouth corner
        (185.0, -180.0, -70.0)  # Right mouth corner
    ])

  
    
    """
    
    model_points: NDArray = np.array([
        (0.0, 0.0, 0.0),  # Nose tip
        (0.0, -450.0, 0.0),  # Chin
        (-110.0, 175.0, -20.0),  #inner Left eye left corner
        (110.0, 175.0, -20.0),  #inner Right eye right corne
        (-300.0, 200.0, -40.0),  # Left eye left corner
        (300.0, 200.0, -40.0),  # Right eye right corne
        (-176.0, -200.0, -20.0),  # Left Mouth corner
        (175.0, -200.0, -20.0)  # Right mouth corner
    ])
    """

    square_model_points: NDArray = np.array([
        (-100.0, -100.0, 0),  # Left eye left corner
        (100.0, -100.0, 0),  # Right eye right corne
        (-100.0, 100.0, 0),  # Left Mouth corner
        (100.0, 100.0, 0)  # Right mouth corner
    ])


    # Example image and camera parameters (replace with actual values)
    image_path = sys.argv[1]
    mp_image,face_landmarker_result = extract_landmark(image_path)
    im = mp_image.numpy_view()
    h,w = im.shape[:2]
    cordinates = get_pixel_cordinate_list(face_landmarker_result.face_landmarks,[4,199,#6,#center of eye
                                                                                 33,263,133,362,61,291],w,h)
    print(cordinates)
    image_points: NDArray = np.array(cordinates, dtype="double")

    

    import math
    def calculate_distance(xy, xy2):
        return math.sqrt((xy2[0] - xy[0])**2 + (xy2[1] - xy[1])**2)

    if im is None:
        raise FileNotFoundError(f"Could not open or find the image file: {image_path}")
    size = im.shape
    focal_length: float = calculate_distance(cordinates[0],cordinates[1])
    focal_length = focal_length*1.5
    print("focal length",focal_length)
    center: tuple[float, float] = (size[1] / 2, size[0] / 2)
    center = cordinates[0]
    camera_matrix: NDArray = np.array([
        [focal_length, 0, center[0]],
        [0, focal_length, center[1]],
        [0, 0, 1]
    ], dtype="double")
    dist_coeffs: NDArray = np.zeros((4, 1))  # Assuming no lens distortion

    # 2D image points. If you change the image, you need to change vector
    '''
        image_points: NDArray = np.array([
        (321, 571),  # Nose tip
        (423, 852),  # Chin
        (201, 406),  # Left eye left corner
        (529, 363),  # Right eye right corne
        (336, 705),  # Left Mouth corner
        (483, 693)  # Right mouth corner
    ], dtype="double")
    '''
    """
        image_points: NDArray = np.array([
        #(663, 325),  # Nose tip
        (655,388),
        (705, 555),  # Chin
        (549, 296),  # inner Left eye left corner
        (651, 291),  # inner Right eye right corne
        (453, 303),  # Left eye left corner
        (718, 294),  # Right eye right corne
        (591, 474),  # Left Mouth corner
        (715, 472)  # Right mouth corner
    ], dtype="double")
    """


    square_image_points: NDArray = np.array([
        (549, 296),  # Nose tip
        (651, 291),  # Chin
        (573, 386),  # Left eye left corner
        (691, 370),  # Right eye right corne
    ], dtype="double")

    flags_list = [
        cv2.SOLVEPNP_EPNP#cv2.SOLVEPNP_ITERATIVE#,cv2.SOLVEPNP_SQPNP,cv2.SOLVEPNP_EPNP
    ]
    im_with_pose = im.copy()
    for flags in flags_list:
        rotation_vector, translation_vector = estimate_head_pose(image_path, model_points,image_points, camera_matrix, dist_coeffs,flags)
        #print(f"Rotation Vector:\n {rotation_vector}")
        #print(f"Translation Vector:\n {translation_vector}")
        #initial
        #im_with_pose = draw_head_pose(im_with_pose, image_points, rotation_vector, translation_vector, camera_matrix, dist_coeffs)

    from scipy.spatial.transform import Rotation as R
    def print_euler(rotation_vector):
        order = "yxz"
        rotation_matrix, _ = cv2.Rodrigues(rotation_vector)
       
        r = R.from_matrix(rotation_matrix)
        euler_angles = r.as_euler(order, degrees=True)
        print(f"Euler Angles {order} (degrees): {euler_angles}")

    print_euler(rotation_vector)
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 1000, 1e-8)  # 反復終了条件
    
    rotation_vector, translation_vector = cv2.solvePnPRefineLM(model_points, image_points, camera_matrix, dist_coeffs, rotation_vector, translation_vector, criteria=criteria)
    im_with_pose = draw_head_pose(im_with_pose, image_points, rotation_vector, translation_vector, camera_matrix, dist_coeffs,128)
    print_euler(rotation_vector)
    
    #rotation_vector[0]=0
    #rotation_vector[1]=0
    #rotation_vector[2]=0

    #(success, rotation_vector, translation_vector) = cv2.solvePnP(
    #    model_points, image_points, camera_matrix, dist_coeffs,rotation_vector ,translation_vector,flags=cv2.SOLVEPNP_ITERATIVE)
    
    im_with_pose = draw_head_pose(im_with_pose, image_points, rotation_vector, translation_vector, camera_matrix, dist_coeffs)

    #print_euler(rotation_vector)

    (rotation_matrix, jacobian) = cv2.Rodrigues(rotation_vector)
    mat = np.hstack((rotation_matrix, translation_vector))

        #yaw,pitch,rollの取り出し
    (_, _, _, _, _, _, eulerAngles) = cv2.decomposeProjectionMatrix(mat)
    print(eulerAngles)
    #rvec, tvec = cv2.solvePnPRefineVVS(model_points, image_points, camera_matrix, dist_coeffs, rotation_vector, translation_vector, criteria=criteria)
    #im_with_pose = draw_head_pose(im_with_pose, image_points, rvec, tvec, camera_matrix, dist_coeffs)
    

    #square
    #rvec, tvec = estimate_head_pose(image_path, square_model_points,square_image_points, camera_matrix, dist_coeffs,cv2.SOLVEPNP_IPPE_SQUARE)
    #not so good
    #im_with_pose = draw_head_pose(im_with_pose, square_image_points, rvec, tvec, camera_matrix, dist_coeffs)

    

    #print(rotation_matrix)
    # 回転行列をオイラー角に変換
    #euler_angles = cv2.decomposeProjectionMatrix(rotation_matrix)[-1]

    # オイラー角の表示 (x, y, z)
    
    # Display image
    cv2.imshow("Output", cv2.cvtColor(im_with_pose, cv2.COLOR_BGR2RGB))
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    cv2.imwrite("result.jpg",cv2.cvtColor(im_with_pose, cv2.COLOR_BGR2RGB))

if __name__ == "__main__":
    main()