File size: 10,227 Bytes
661ec13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import cv2
import numpy as np
from numpy.typing import NDArray
import sys
from mp_utils import get_pixel_cordinate_list,extract_landmark
def estimate_head_pose(im: NDArray, model_points: NDArray, image_points,camera_matrix: NDArray, dist_coeffs: NDArray,flags = cv2.SOLVEPNP_ITERATIVE,rotation_vector=None,translation_vector=None) -> tuple[NDArray, NDArray]:
"""
Estimates the head pose from an image.
Args:
image_path: Path to the image file.
model_points: 3D model points.
camera_matrix: Camera intrinsic matrix.
dist_coeffs: Lens distortion coefficients.
Returns:
rotation_vector: Estimated rotation vector.
translation_vector: Estimated translation vector.
"""
size = im.shape
'''
image_points: NDArray = np.array([
(359, 391), # Nose tip
(399, 561), # Chin
(337, 297), # Left eye left corner
(513, 301), # Right eye right corne
(345, 465), # Left Mouth corner
(453, 469) # Right mouth corner
], dtype="double")
'''
model_points = model_points +500
(success, rotation_vector, translation_vector) = cv2.solvePnP(
model_points, image_points, camera_matrix, dist_coeffs,flags=flags,
)
print(model_points)
print(image_points)
print(camera_matrix)
if not success:
raise RuntimeError("solvePnP failed.")
return rotation_vector, translation_vector
import cv2
import numpy as np
from numpy.typing import NDArray
def draw_head_pose(image: NDArray, image_points: NDArray, rotation_vector: NDArray, translation_vector: NDArray, camera_matrix: NDArray, dist_coeffs: NDArray,color_max=255,offset_x=0,offset_y=0) -> NDArray:
"""
Draws the head pose (XYZ axes) on the image.
Args:
image: Input image.
image_points: 2D image points.
rotation_vector: Estimated rotation vector.
translation_vector: Estimated translation vector.
camera_matrix: Camera intrinsic matrix.
dist_coeffs: Lens distortion coefficients.
Returns:
Image with head pose drawn.
"""
# Define the 3D points for the XYZ axes
axis_length = 500.0 # Length of the axes
axis_points_3D: NDArray = np.array([
[0, 0, 0], # Origin
[axis_length, 0, 0], # X axis
[0, axis_length, 0], # Y axis
[0, 0, axis_length] # Z axis
], dtype='float32')
# Project the 3D points to the 2D image plane
(axis_points_2D, _) = cv2.projectPoints(
axis_points_3D, rotation_vector, translation_vector, camera_matrix, dist_coeffs
)
axis_points_2D = axis_points_2D.astype(int)
# Draw the axes on the image
origin = tuple(axis_points_2D[0].ravel())
cv2.line(image, origin, tuple(axis_points_2D[1].ravel()), (0, 0, color_max), 3) # X axis (Red)
cv2.line(image, origin, tuple(axis_points_2D[2].ravel()), (0, color_max, 0), 3) # Y axis (Green)
cv2.line(image, origin, tuple(axis_points_2D[3].ravel()), (color_max, 0, 0), 3) # Z axis (Blue)
for p in image_points:
cv2.circle(image, (int(p[0]+offset_x), int(p[1]+offset_y)), 3, (0, 0, 255), -1)
return image
def main():
# 3D model points.
'''
model_points: NDArray = np.array([
(0.0, 0.0, 0.0), # Nose tip
(0.0, 300.0, -65.0), # Chin
(-225.0, -170.0, -135.0), # Left eye left corner
(225.0, -170.0, -135.0), # Right eye right corne
(-150.0, -150.0, -125.0), # Left Mouth corner
(150.0, -150.0, -125.0) # Right mouth corner
])
'''
model_points: NDArray = np.array([
(0.0, 0.0, 0.0), # Nose tip
(0.0, -344.0, -40.0), # Chin
#(0.0, -160.0, -50.0),#center of eye
(-110.0, 215.0, -60.0), #inner Left eye left corner
(110.0, 215.0, -60.0), #inner Right eye right corne
(-300.0, 250.0, -90.0), # Left eye left corner
(300.0, 250.0, -90.0), # Right eye right corne
(-185.0, -180.0, -70.0), # Left Mouth corner
(185.0, -180.0, -70.0) # Right mouth corner
])
"""
model_points: NDArray = np.array([
(0.0, 0.0, 0.0), # Nose tip
(0.0, -450.0, 0.0), # Chin
(-110.0, 175.0, -20.0), #inner Left eye left corner
(110.0, 175.0, -20.0), #inner Right eye right corne
(-300.0, 200.0, -40.0), # Left eye left corner
(300.0, 200.0, -40.0), # Right eye right corne
(-176.0, -200.0, -20.0), # Left Mouth corner
(175.0, -200.0, -20.0) # Right mouth corner
])
"""
square_model_points: NDArray = np.array([
(-100.0, -100.0, 0), # Left eye left corner
(100.0, -100.0, 0), # Right eye right corne
(-100.0, 100.0, 0), # Left Mouth corner
(100.0, 100.0, 0) # Right mouth corner
])
# Example image and camera parameters (replace with actual values)
image_path = sys.argv[1]
mp_image,face_landmarker_result = extract_landmark(image_path)
im = mp_image.numpy_view()
h,w = im.shape[:2]
cordinates = get_pixel_cordinate_list(face_landmarker_result.face_landmarks,[4,199,#6,#center of eye
33,263,133,362,61,291],w,h)
print(cordinates)
image_points: NDArray = np.array(cordinates, dtype="double")
import math
def calculate_distance(xy, xy2):
return math.sqrt((xy2[0] - xy[0])**2 + (xy2[1] - xy[1])**2)
if im is None:
raise FileNotFoundError(f"Could not open or find the image file: {image_path}")
size = im.shape
focal_length: float = calculate_distance(cordinates[0],cordinates[1])
focal_length = focal_length*1.5
print("focal length",focal_length)
center: tuple[float, float] = (size[1] / 2, size[0] / 2)
center = cordinates[0]
camera_matrix: NDArray = np.array([
[focal_length, 0, center[0]],
[0, focal_length, center[1]],
[0, 0, 1]
], dtype="double")
dist_coeffs: NDArray = np.zeros((4, 1)) # Assuming no lens distortion
# 2D image points. If you change the image, you need to change vector
'''
image_points: NDArray = np.array([
(321, 571), # Nose tip
(423, 852), # Chin
(201, 406), # Left eye left corner
(529, 363), # Right eye right corne
(336, 705), # Left Mouth corner
(483, 693) # Right mouth corner
], dtype="double")
'''
"""
image_points: NDArray = np.array([
#(663, 325), # Nose tip
(655,388),
(705, 555), # Chin
(549, 296), # inner Left eye left corner
(651, 291), # inner Right eye right corne
(453, 303), # Left eye left corner
(718, 294), # Right eye right corne
(591, 474), # Left Mouth corner
(715, 472) # Right mouth corner
], dtype="double")
"""
square_image_points: NDArray = np.array([
(549, 296), # Nose tip
(651, 291), # Chin
(573, 386), # Left eye left corner
(691, 370), # Right eye right corne
], dtype="double")
flags_list = [
cv2.SOLVEPNP_EPNP#cv2.SOLVEPNP_ITERATIVE#,cv2.SOLVEPNP_SQPNP,cv2.SOLVEPNP_EPNP
]
im_with_pose = im.copy()
for flags in flags_list:
rotation_vector, translation_vector = estimate_head_pose(image_path, model_points,image_points, camera_matrix, dist_coeffs,flags)
#print(f"Rotation Vector:\n {rotation_vector}")
#print(f"Translation Vector:\n {translation_vector}")
#initial
#im_with_pose = draw_head_pose(im_with_pose, image_points, rotation_vector, translation_vector, camera_matrix, dist_coeffs)
from scipy.spatial.transform import Rotation as R
def print_euler(rotation_vector):
order = "yxz"
rotation_matrix, _ = cv2.Rodrigues(rotation_vector)
r = R.from_matrix(rotation_matrix)
euler_angles = r.as_euler(order, degrees=True)
print(f"Euler Angles {order} (degrees): {euler_angles}")
print_euler(rotation_vector)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 1000, 1e-8) # 反復終了条件
rotation_vector, translation_vector = cv2.solvePnPRefineLM(model_points, image_points, camera_matrix, dist_coeffs, rotation_vector, translation_vector, criteria=criteria)
im_with_pose = draw_head_pose(im_with_pose, image_points, rotation_vector, translation_vector, camera_matrix, dist_coeffs,128)
print_euler(rotation_vector)
#rotation_vector[0]=0
#rotation_vector[1]=0
#rotation_vector[2]=0
#(success, rotation_vector, translation_vector) = cv2.solvePnP(
# model_points, image_points, camera_matrix, dist_coeffs,rotation_vector ,translation_vector,flags=cv2.SOLVEPNP_ITERATIVE)
im_with_pose = draw_head_pose(im_with_pose, image_points, rotation_vector, translation_vector, camera_matrix, dist_coeffs)
#print_euler(rotation_vector)
(rotation_matrix, jacobian) = cv2.Rodrigues(rotation_vector)
mat = np.hstack((rotation_matrix, translation_vector))
#yaw,pitch,rollの取り出し
(_, _, _, _, _, _, eulerAngles) = cv2.decomposeProjectionMatrix(mat)
print(eulerAngles)
#rvec, tvec = cv2.solvePnPRefineVVS(model_points, image_points, camera_matrix, dist_coeffs, rotation_vector, translation_vector, criteria=criteria)
#im_with_pose = draw_head_pose(im_with_pose, image_points, rvec, tvec, camera_matrix, dist_coeffs)
#square
#rvec, tvec = estimate_head_pose(image_path, square_model_points,square_image_points, camera_matrix, dist_coeffs,cv2.SOLVEPNP_IPPE_SQUARE)
#not so good
#im_with_pose = draw_head_pose(im_with_pose, square_image_points, rvec, tvec, camera_matrix, dist_coeffs)
#print(rotation_matrix)
# 回転行列をオイラー角に変換
#euler_angles = cv2.decomposeProjectionMatrix(rotation_matrix)[-1]
# オイラー角の表示 (x, y, z)
# Display image
cv2.imshow("Output", cv2.cvtColor(im_with_pose, cv2.COLOR_BGR2RGB))
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite("result.jpg",cv2.cvtColor(im_with_pose, cv2.COLOR_BGR2RGB))
if __name__ == "__main__":
main() |