File size: 17,899 Bytes
661ec13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import spaces
import gradio as gr
import subprocess
from PIL import Image,ImageOps,ImageDraw,ImageFilter
import json
import os
import time
import mp_box
from mp_utils import get_pixel_cordinate_list,extract_landmark,get_pixel_cordinate,get_pixel_xyz
from glibvision.draw_utils import points_to_box,box_to_xy,plus_point


from glibvision.cv2_utils import plot_points,create_color_image,pil_to_bgr_image,set_plot_text,copy_image

from gradio_utils import save_image,save_buffer,clear_old_files ,read_file

import cv2
from  cv2_pose_estimate import estimate_head_pose,draw_head_pose

import numpy as np
from numpy.typing import NDArray

'''
    innner_eyes_blur - inner eyes blur
    iris_mask_blur - final iris edge blur
'''

set_plot_text(False,0.5,(200,200,200))

depath_ratio = 1.0

model_cordinates = [ (0.0, 0.0, 0.0),  # Nose tip
    (0.0, 344.0, -40.0 * depath_ratio),  # Chin
    #(0.0, -160.0, -50.0),#center of eye
    #INNER
    (-110.0, -215.0, -60.0 * depath_ratio),  #inner Left eye left corner
    (110.0, -215.0, -60.0 * depath_ratio),  #inner Right eye right corne
    
    (-300.0, -250.0, -90.0 * depath_ratio),  # Left eye left corner
    (300.0, -250.0, -90.0 * depath_ratio),  # Right eye right corne

    (-125.0, 180.0, -70.0 * depath_ratio),  # Left Mouth corner
    (125.0, 180.0, -70.0 * depath_ratio) ] # Right mouth corner

def fit_cordinates(cordinates,center_x=512,center_y=512,base_distance = 344):
    ratio = base_distance/(cordinates[1][1])
    fitted_cordinates = []
    
    for cordinate in model_cordinates:
        fitted_cordinate = [
            cordinate[0]*ratio+center_x,
            cordinate[1]*ratio+center_y,
            cordinate[2]*ratio
        ]
        fitted_cordinates.append(fitted_cordinate)
    return fitted_cordinates


def plot_model(cv2_image=None,center_x=512,center_y=512,base_distance = 344):
    if cv2_image is None:
        #TODO add arg 
        cv2_image=create_color_image(np.zeros((1024, 1024,3),dtype=np.uint8))
    fitted_cordinates = fit_cordinates(model_cordinates,center_x,center_y,base_distance)
    ratio = base_distance/model_cordinates[1][1]

    def adjust_cordinate(point):
        
        
        return point
    
    plot_points(cv2_image,[adjust_cordinate(fitted_cordinates[0])],False,6,(0,0,255),3,(255,0,0))
    plot_points(cv2_image,[adjust_cordinate((fitted_cordinates[1]))],False,6,(0,0,255),3,(255,0,0))

    plot_points(cv2_image,[adjust_cordinate((fitted_cordinates[2])),adjust_cordinate((fitted_cordinates[4]))],False,6,(0,0,255),3,(255,0,0))
    plot_points(cv2_image,[adjust_cordinate((fitted_cordinates[3])),adjust_cordinate((fitted_cordinates[5]))],False,6,(0,0,255),3,(255,0,0))
    plot_points(cv2_image,[adjust_cordinate((fitted_cordinates[6])),adjust_cordinate((fitted_cordinates[7]))],False,6,(0,0,255),3,(255,0,0))

    return cv2_image
     

def set_model_cordinates(cordinates):
    global model_cordinates
    model_cordinates = cordinates

def process_images(image,base_image,
                   camera_fov,double_check_offset_center,
                   draw_base_model,fit_base_model,
                   first_pnp,second_refine,final_iterative,debug_process,draw_mediapipe_mesh,draw_mediapipe_result,z_multiply=0.8,
        progress=gr.Progress(track_tqdm=True)):
    clear_old_files()
    
    image_indices = [4,199,#6,#center of eye
                        133,362,#inner eye
                        33,263, #outer eye
                        61,291]#mouth
    

    chin = 344
    global model_cordinates
    
    """ normalize ?
    model_cordinates =[
        [pt[0]/chin,pt[1]/chin,pt[2]/chin] for pt in model_cordinates
    ]
    """
    

    def landmarks_to_model_corsinates(face_landmarks,indices,w,h):
        cordinates = []
        z_depth = w if w<h else h
        z_depth *=z_multiply
        for index in indices:
            xyz = get_pixel_xyz(face_landmarker_result.face_landmarks,index,w,h)
            #print(xyz,xyz[2]*z_multiply) #TODO chose?
            cordinates.append([
                xyz[0],xyz[1],xyz[2]*z_depth
            ])
        return cordinates

    if image == None:
        raise gr.Error("Need Image")
    cv2_image = pil_to_bgr_image(image)
    size = cv2_image.shape
    center: tuple[float, float] = (size[1] / 2, size[0] / 2)

    if base_image is not None:#additiona base image
        
        base_image_indices = [
            6,197,195,5,4,#nose center
            122,196,  3, 51, 45,
            351,419,248,281,275,

            122,245,244,243,133, #eyes
            351,465,464,463,362 #eyes
        ]
        # TODO check same?
        cv2_base_image = pil_to_bgr_image(base_image)
        mp_image,face_landmarker_result = extract_landmark(cv2_base_image,"face_landmarker.task",0,0,True)
        h,w = cv2_base_image.shape[:2]
        
        image_indices = base_image_indices
        set_model_cordinates(landmarks_to_model_corsinates(face_landmarker_result.face_landmarks,image_indices,w,h))
    print(image_indices)

    import math
    def calculate_distance(xy, xy2):
        return math.sqrt((xy2[0] - xy[0])**2 + (xy2[1] - xy[1])**2)

    mp_image,face_landmarker_result = extract_landmark(cv2_image,"face_landmarker.task",0,0,True)
    im = mp_image.numpy_view()
    h,w = im.shape[:2]

    first_landmarker_result = None
    if double_check_offset_center:
        root_cordinate = get_pixel_cordinate(face_landmarker_result.face_landmarks,image_indices[0],w,h)#nose tip
        diff_center_x = center[0] - root_cordinate[0]
        diff_center_y = center[1] - root_cordinate[1]
        base = np.zeros_like(cv2_image)
        copy_image(base,cv2_image,diff_center_x,diff_center_y)
        first_landmarker_result = face_landmarker_result
        mp_image,face_landmarker_result = extract_landmark(base,"face_landmarker.task",0,0,True)
        im = mp_image.numpy_view()
    else:
        diff_center_x=0
        diff_center_y=0
        #return base,"",""

    cordinates = get_pixel_cordinate_list(face_landmarker_result.face_landmarks,image_indices,w,h)
    


    if draw_mediapipe_mesh:
        image = mp_box.draw_landmarks_on_image(face_landmarker_result,image)
        cv2_image = pil_to_bgr_image(image)

    chin_distance = calculate_distance(cordinates[0],cordinates[1])
    #trying detect pnp from same pose,but seeems not working
    #fitted_cordinates = fit_cordinates(model_cordinates,cordinates[0][0],cordinates[0][1],chin_distance)
    if fit_base_model:
        #not get good result
        #model_points: NDArray = np.array(fitted_cordinates, dtype="double")
        model_points: NDArray = np.array(model_cordinates, dtype="double")
    else:
        model_points: NDArray = np.array(model_cordinates, dtype="double")
    
    

   



    focal_length: float = calculate_distance(cordinates[0],cordinates[1])
    focal_length = focal_length*camera_fov

    
    
    
    #image_size = size[0] #TODO
    #f = (image_size / 2) / np.tan(np.deg2rad(camera_fov / 2))
    #focal_length = f
    #print(f"fov ={camera_fov} size = {image_size} focal_length = {focal_length}")

    
    
    camera_matrix: NDArray = np.array([
        [focal_length, 0, center[0]],
        [0, focal_length, center[1]],
        [0, 0, 1]
    ], dtype="double")
    dist_coeffs: NDArray = np.zeros((4, 1))

    # offset center usually improve result


    image_points: NDArray = np.array(cordinates, dtype="double")


    from scipy.spatial.transform import Rotation as R
    def print_euler(rotation_vector,label=""):
        order = "yxz"
        rotation_matrix, _ = cv2.Rodrigues(rotation_vector)
       
        r = R.from_matrix(rotation_matrix)
        euler_angles = r.as_euler(order, degrees=True)
        label = f"{label} Euler Angles {order} (degrees): {euler_angles}"
        
        return label

    rotation_vector = None
    translation_vector = None
    im_with_pose = cv2_image
    result_label = None
    mediapipe_text = None

    def face_landmarker_result_to_angle_label(face_landmarker_result,order="yxz"):
        if len(face_landmarker_result.facial_transformation_matrixes)>0:
            
            transformation_matrix=face_landmarker_result.facial_transformation_matrixes[0]
            
            rotation_matrix, translation_vector = transformation_matrix[:3, :3],transformation_matrix[:3, 3]
            #TODO change base-size
            scaled_translation_vector =(translation_vector[0]*1024,translation_vector[1]*1024,translation_vector[2]*1024)
            #scaled_translation_vector = (-512,-512,-1024)
            if draw_mediapipe_result:
                im_with_pose = draw_head_pose(im_with_pose, image_points, rotation_matrix, scaled_translation_vector, camera_matrix, dist_coeffs,32,-diff_center_x,-diff_center_y)
            #print("mediapipe",scaled_translation_vector)
            #mediapipe_label = print_euler(rotation_vector,"MediaPipe")
            r = R.from_matrix(rotation_matrix)
            euler_angles = r.as_euler(order, degrees=True)
            label = f"Media pipe Euler Angles {order} (degrees): {euler_angles}"
            return label
        
    if first_landmarker_result != None:
        mediapipe_first_text = face_landmarker_result_to_angle_label(first_landmarker_result)
    else:
        mediapipe_first_text = ""
        
    mediapipe_second_text = face_landmarker_result_to_angle_label(face_landmarker_result)

    if first_pnp!="None":
        if first_pnp == "EPNP":
            flags = cv2.SOLVEPNP_EPNP
        elif first_pnp == "ITERATIVE":
            flags = cv2.SOLVEPNP_ITERATIVE
        elif first_pnp == "IPPE":
            flags = cv2.SOLVEPNP_IPPE
        else:
            flags = cv2.SOLVEPNP_SQPNP
        if first_pnp == "Mediapipe":
            rotation_vector, _ = cv2.Rodrigues(rotation_matrix)
            translation_vector =  scaled_translation_vector
        else:
            translation_vector = None
            #translation_vector = np.array([cordinates[0][0],cordinates[0][1],focal_length],dtype="double")
            #translation_vector = scaled_translation_vector
            #print("initial",translation_vector,)
            rotation_vector, translation_vector = estimate_head_pose(cv2_image, model_points,image_points, camera_matrix, dist_coeffs,flags,None,translation_vector)
            #print(translation_vector)
            im_with_pose = cv2_image
            result_label = print_euler(rotation_vector,first_pnp)
            print("firstpnp",translation_vector)
            if debug_process:
                im_with_pose = draw_head_pose(cv2_image, image_points, rotation_vector, translation_vector, camera_matrix, dist_coeffs,128,-diff_center_x,-diff_center_y)

    if first_pnp!="None" and second_refine!="None":
        criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 1000, 1e-8)  # 反復終了条件
        if second_refine == "LM":
            rotation_vector, translation_vector = cv2.solvePnPRefineLM(model_points, image_points, camera_matrix, dist_coeffs, rotation_vector, translation_vector, criteria=criteria)
        else:
            rotation_vector, translation_vector = cv2.solvePnPRefineVVS(model_points, image_points, camera_matrix, dist_coeffs, rotation_vector, translation_vector, criteria=criteria)
        if debug_process:
            im_with_pose = draw_head_pose(im_with_pose, image_points, rotation_vector, translation_vector, camera_matrix, dist_coeffs,128+64,-diff_center_x,-diff_center_y)
        result_label = print_euler(rotation_vector,second_refine)
        #print("refine",translation_vector)

    if final_iterative:
        (success, rotation_vector, translation_vector) = cv2.solvePnP(
            model_points, image_points, camera_matrix, dist_coeffs,rotation_vector ,translation_vector,flags=cv2.SOLVEPNP_ITERATIVE)
        if success:
             result_label = print_euler(rotation_vector,"SOLVEPNP_ITERATIVE")
        else:
            
            raise gr.Warning("final_iterative faild")
    #draw final one
    if rotation_vector is not None:
        im_with_pose = draw_head_pose(im_with_pose, image_points, rotation_vector, translation_vector, camera_matrix, dist_coeffs,255,-diff_center_x,-diff_center_y)
        
        # mediapipe metrix
        #print("opencv",translation_vector)
    
    
    if draw_base_model:
        if fit_base_model:
            im_with_pose=plot_model(im_with_pose,cordinates[0][0],cordinates[0][1],chin_distance)
        else:
             im_with_pose=plot_model(im_with_pose)

    return cv2.cvtColor(im_with_pose,cv2.COLOR_BGR2RGB),result_label,mediapipe_first_text,mediapipe_second_text



css="""
#col-left {
    margin: 0 auto;
    max-width: 640px;
}
#col-right {
    margin: 0 auto;
    max-width: 640px;
}
.grid-container {
  display: flex;
  align-items: center;
  justify-content: center;
  gap:10px
}

.image {
  width: 128px; 
  height: 128px; 
  object-fit: cover; 
}

.text {
  font-size: 16px;
}
"""

#css=css,



with gr.Blocks(css=css, elem_id="demo-container") as demo:
    with gr.Column():
        gr.HTML(read_file("demo_header.html"))
        gr.HTML(read_file("demo_tools.html"))
    with gr.Row():
                with gr.Column():
                    image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB',elem_id="image_upload", type="pil", label="Image")
                    
                    with gr.Row(elem_id="prompt-container",  equal_height=False):
                        with gr.Row():
                            btn = gr.Button("Pose Estimate", elem_id="run_button",variant="primary")
                    
                    
                        
                    with gr.Accordion(label="Advanced Settings", open=True):
                        #need better landmarker
                        base_image = gr.Image(sources=['upload','clipboard'],image_mode='RGB',elem_id="image_upload", type="pil", label="Image",visible=False)
                       
                        with gr.Row( equal_height=True):
                            camera_fov = gr.Slider(info="not effect mediapipe,nose-chin x multiply",
                            label="Multiply value",
                            minimum=0.1,
                            maximum=2.0,
                            step=0.01,
                            value=1.2)
                            double_check_offset_center = gr.Checkbox(label="offset center point",value=True,info="move center and detect again(usually more accurate)") 
                            z_multiply = gr.Slider(info="nose depth",
                            label="Z-Multiply",
                            minimum=0.1,
                            maximum=1.5,
                            step=0.01,
                            value=0.8)
                        with gr.Row( equal_height=True):
                            draw_base_model = gr.Checkbox(label="draw base model",value=False,info="draw base model") 
                            fit_base_model = gr.Checkbox(label="fit base model",value=False,info="This is just for visual,not use as model")
                        
                        first_pnp =gr.Radio(label="PnP",choices=["None","EPNP","SQPNP","IPPE","ITERATIVE","Mediapipe"],value="EPNP")
                        second_refine =gr.Radio(label="PnP refine",choices=["None","LM","VVS"],value="LM")
                        with gr.Row( equal_height=True):      
                            final_iterative = gr.Checkbox(label="PnP final iterative",value=False,info="sometime good")
                            debug_process = gr.Checkbox(label="Debug Process",value=False)
                            draw_mediapipe_mesh = gr.Checkbox(label="Draw mediapipe mesh",value=False)
                            draw_mediapipe_result = gr.Checkbox(label="Draw mediapipe result",value=False)
                        plot_button = gr.Button("Plot Model", elem_id="run_button")
                                         
                with gr.Column():
                    result_image = gr.Image(height=760,label="Result", elem_id="output-animation",image_mode='RGB')
                    result_text = gr.Textbox(label="cv2 result")
                    mediapipe_first_text = gr.Textbox(label="first mediapipe result")
                    mediapipe_last_text = gr.Textbox(label="2nd or last mediapipe result")

    btn.click(fn=process_images, inputs=[image,base_image,
                                         camera_fov,double_check_offset_center,
                                         draw_base_model,fit_base_model,
                                         first_pnp,second_refine,final_iterative,debug_process,draw_mediapipe_mesh,draw_mediapipe_result
                                         ],outputs=[result_image,result_text,mediapipe_first_text,mediapipe_last_text] ,api_name='infer')
    plot_button.click(fn=plot_model,inputs=[],outputs=[result_image])
    
    example_images = [
                     ["examples/02316230.jpg"],
                    ["examples/00003245_00.jpg"],
                   ["examples/00827009.jpg"],
                     ["examples/00002062.jpg"],
                    ["examples/00824008.jpg"],
                    ["examples/00825000.jpg"],
                    ["examples/00826007.jpg"],
                     ["examples/00824006.jpg"],
                    ["examples/00828003.jpg"],
                     ["examples/00002200.jpg"],
                    ["examples/00005259.jpg"],
                    ["examples/00018022.jpg"],
                    ["examples/img-above.jpg"],
                     ["examples/00100265.jpg"],
                      ["examples/00039259.jpg"],
                     
                ]
    example1=gr.Examples(
                examples = example_images,label="Image",
                inputs=[image],examples_per_page=8
    )
    gr.HTML(read_file("demo_footer.html"))

    if __name__ == "__main__":
        demo.launch()