File size: 17,899 Bytes
661ec13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
import spaces
import gradio as gr
import subprocess
from PIL import Image,ImageOps,ImageDraw,ImageFilter
import json
import os
import time
import mp_box
from mp_utils import get_pixel_cordinate_list,extract_landmark,get_pixel_cordinate,get_pixel_xyz
from glibvision.draw_utils import points_to_box,box_to_xy,plus_point
from glibvision.cv2_utils import plot_points,create_color_image,pil_to_bgr_image,set_plot_text,copy_image
from gradio_utils import save_image,save_buffer,clear_old_files ,read_file
import cv2
from cv2_pose_estimate import estimate_head_pose,draw_head_pose
import numpy as np
from numpy.typing import NDArray
'''
innner_eyes_blur - inner eyes blur
iris_mask_blur - final iris edge blur
'''
set_plot_text(False,0.5,(200,200,200))
depath_ratio = 1.0
model_cordinates = [ (0.0, 0.0, 0.0), # Nose tip
(0.0, 344.0, -40.0 * depath_ratio), # Chin
#(0.0, -160.0, -50.0),#center of eye
#INNER
(-110.0, -215.0, -60.0 * depath_ratio), #inner Left eye left corner
(110.0, -215.0, -60.0 * depath_ratio), #inner Right eye right corne
(-300.0, -250.0, -90.0 * depath_ratio), # Left eye left corner
(300.0, -250.0, -90.0 * depath_ratio), # Right eye right corne
(-125.0, 180.0, -70.0 * depath_ratio), # Left Mouth corner
(125.0, 180.0, -70.0 * depath_ratio) ] # Right mouth corner
def fit_cordinates(cordinates,center_x=512,center_y=512,base_distance = 344):
ratio = base_distance/(cordinates[1][1])
fitted_cordinates = []
for cordinate in model_cordinates:
fitted_cordinate = [
cordinate[0]*ratio+center_x,
cordinate[1]*ratio+center_y,
cordinate[2]*ratio
]
fitted_cordinates.append(fitted_cordinate)
return fitted_cordinates
def plot_model(cv2_image=None,center_x=512,center_y=512,base_distance = 344):
if cv2_image is None:
#TODO add arg
cv2_image=create_color_image(np.zeros((1024, 1024,3),dtype=np.uint8))
fitted_cordinates = fit_cordinates(model_cordinates,center_x,center_y,base_distance)
ratio = base_distance/model_cordinates[1][1]
def adjust_cordinate(point):
return point
plot_points(cv2_image,[adjust_cordinate(fitted_cordinates[0])],False,6,(0,0,255),3,(255,0,0))
plot_points(cv2_image,[adjust_cordinate((fitted_cordinates[1]))],False,6,(0,0,255),3,(255,0,0))
plot_points(cv2_image,[adjust_cordinate((fitted_cordinates[2])),adjust_cordinate((fitted_cordinates[4]))],False,6,(0,0,255),3,(255,0,0))
plot_points(cv2_image,[adjust_cordinate((fitted_cordinates[3])),adjust_cordinate((fitted_cordinates[5]))],False,6,(0,0,255),3,(255,0,0))
plot_points(cv2_image,[adjust_cordinate((fitted_cordinates[6])),adjust_cordinate((fitted_cordinates[7]))],False,6,(0,0,255),3,(255,0,0))
return cv2_image
def set_model_cordinates(cordinates):
global model_cordinates
model_cordinates = cordinates
def process_images(image,base_image,
camera_fov,double_check_offset_center,
draw_base_model,fit_base_model,
first_pnp,second_refine,final_iterative,debug_process,draw_mediapipe_mesh,draw_mediapipe_result,z_multiply=0.8,
progress=gr.Progress(track_tqdm=True)):
clear_old_files()
image_indices = [4,199,#6,#center of eye
133,362,#inner eye
33,263, #outer eye
61,291]#mouth
chin = 344
global model_cordinates
""" normalize ?
model_cordinates =[
[pt[0]/chin,pt[1]/chin,pt[2]/chin] for pt in model_cordinates
]
"""
def landmarks_to_model_corsinates(face_landmarks,indices,w,h):
cordinates = []
z_depth = w if w<h else h
z_depth *=z_multiply
for index in indices:
xyz = get_pixel_xyz(face_landmarker_result.face_landmarks,index,w,h)
#print(xyz,xyz[2]*z_multiply) #TODO chose?
cordinates.append([
xyz[0],xyz[1],xyz[2]*z_depth
])
return cordinates
if image == None:
raise gr.Error("Need Image")
cv2_image = pil_to_bgr_image(image)
size = cv2_image.shape
center: tuple[float, float] = (size[1] / 2, size[0] / 2)
if base_image is not None:#additiona base image
base_image_indices = [
6,197,195,5,4,#nose center
122,196, 3, 51, 45,
351,419,248,281,275,
122,245,244,243,133, #eyes
351,465,464,463,362 #eyes
]
# TODO check same?
cv2_base_image = pil_to_bgr_image(base_image)
mp_image,face_landmarker_result = extract_landmark(cv2_base_image,"face_landmarker.task",0,0,True)
h,w = cv2_base_image.shape[:2]
image_indices = base_image_indices
set_model_cordinates(landmarks_to_model_corsinates(face_landmarker_result.face_landmarks,image_indices,w,h))
print(image_indices)
import math
def calculate_distance(xy, xy2):
return math.sqrt((xy2[0] - xy[0])**2 + (xy2[1] - xy[1])**2)
mp_image,face_landmarker_result = extract_landmark(cv2_image,"face_landmarker.task",0,0,True)
im = mp_image.numpy_view()
h,w = im.shape[:2]
first_landmarker_result = None
if double_check_offset_center:
root_cordinate = get_pixel_cordinate(face_landmarker_result.face_landmarks,image_indices[0],w,h)#nose tip
diff_center_x = center[0] - root_cordinate[0]
diff_center_y = center[1] - root_cordinate[1]
base = np.zeros_like(cv2_image)
copy_image(base,cv2_image,diff_center_x,diff_center_y)
first_landmarker_result = face_landmarker_result
mp_image,face_landmarker_result = extract_landmark(base,"face_landmarker.task",0,0,True)
im = mp_image.numpy_view()
else:
diff_center_x=0
diff_center_y=0
#return base,"",""
cordinates = get_pixel_cordinate_list(face_landmarker_result.face_landmarks,image_indices,w,h)
if draw_mediapipe_mesh:
image = mp_box.draw_landmarks_on_image(face_landmarker_result,image)
cv2_image = pil_to_bgr_image(image)
chin_distance = calculate_distance(cordinates[0],cordinates[1])
#trying detect pnp from same pose,but seeems not working
#fitted_cordinates = fit_cordinates(model_cordinates,cordinates[0][0],cordinates[0][1],chin_distance)
if fit_base_model:
#not get good result
#model_points: NDArray = np.array(fitted_cordinates, dtype="double")
model_points: NDArray = np.array(model_cordinates, dtype="double")
else:
model_points: NDArray = np.array(model_cordinates, dtype="double")
focal_length: float = calculate_distance(cordinates[0],cordinates[1])
focal_length = focal_length*camera_fov
#image_size = size[0] #TODO
#f = (image_size / 2) / np.tan(np.deg2rad(camera_fov / 2))
#focal_length = f
#print(f"fov ={camera_fov} size = {image_size} focal_length = {focal_length}")
camera_matrix: NDArray = np.array([
[focal_length, 0, center[0]],
[0, focal_length, center[1]],
[0, 0, 1]
], dtype="double")
dist_coeffs: NDArray = np.zeros((4, 1))
# offset center usually improve result
image_points: NDArray = np.array(cordinates, dtype="double")
from scipy.spatial.transform import Rotation as R
def print_euler(rotation_vector,label=""):
order = "yxz"
rotation_matrix, _ = cv2.Rodrigues(rotation_vector)
r = R.from_matrix(rotation_matrix)
euler_angles = r.as_euler(order, degrees=True)
label = f"{label} Euler Angles {order} (degrees): {euler_angles}"
return label
rotation_vector = None
translation_vector = None
im_with_pose = cv2_image
result_label = None
mediapipe_text = None
def face_landmarker_result_to_angle_label(face_landmarker_result,order="yxz"):
if len(face_landmarker_result.facial_transformation_matrixes)>0:
transformation_matrix=face_landmarker_result.facial_transformation_matrixes[0]
rotation_matrix, translation_vector = transformation_matrix[:3, :3],transformation_matrix[:3, 3]
#TODO change base-size
scaled_translation_vector =(translation_vector[0]*1024,translation_vector[1]*1024,translation_vector[2]*1024)
#scaled_translation_vector = (-512,-512,-1024)
if draw_mediapipe_result:
im_with_pose = draw_head_pose(im_with_pose, image_points, rotation_matrix, scaled_translation_vector, camera_matrix, dist_coeffs,32,-diff_center_x,-diff_center_y)
#print("mediapipe",scaled_translation_vector)
#mediapipe_label = print_euler(rotation_vector,"MediaPipe")
r = R.from_matrix(rotation_matrix)
euler_angles = r.as_euler(order, degrees=True)
label = f"Media pipe Euler Angles {order} (degrees): {euler_angles}"
return label
if first_landmarker_result != None:
mediapipe_first_text = face_landmarker_result_to_angle_label(first_landmarker_result)
else:
mediapipe_first_text = ""
mediapipe_second_text = face_landmarker_result_to_angle_label(face_landmarker_result)
if first_pnp!="None":
if first_pnp == "EPNP":
flags = cv2.SOLVEPNP_EPNP
elif first_pnp == "ITERATIVE":
flags = cv2.SOLVEPNP_ITERATIVE
elif first_pnp == "IPPE":
flags = cv2.SOLVEPNP_IPPE
else:
flags = cv2.SOLVEPNP_SQPNP
if first_pnp == "Mediapipe":
rotation_vector, _ = cv2.Rodrigues(rotation_matrix)
translation_vector = scaled_translation_vector
else:
translation_vector = None
#translation_vector = np.array([cordinates[0][0],cordinates[0][1],focal_length],dtype="double")
#translation_vector = scaled_translation_vector
#print("initial",translation_vector,)
rotation_vector, translation_vector = estimate_head_pose(cv2_image, model_points,image_points, camera_matrix, dist_coeffs,flags,None,translation_vector)
#print(translation_vector)
im_with_pose = cv2_image
result_label = print_euler(rotation_vector,first_pnp)
print("firstpnp",translation_vector)
if debug_process:
im_with_pose = draw_head_pose(cv2_image, image_points, rotation_vector, translation_vector, camera_matrix, dist_coeffs,128,-diff_center_x,-diff_center_y)
if first_pnp!="None" and second_refine!="None":
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 1000, 1e-8) # 反復終了条件
if second_refine == "LM":
rotation_vector, translation_vector = cv2.solvePnPRefineLM(model_points, image_points, camera_matrix, dist_coeffs, rotation_vector, translation_vector, criteria=criteria)
else:
rotation_vector, translation_vector = cv2.solvePnPRefineVVS(model_points, image_points, camera_matrix, dist_coeffs, rotation_vector, translation_vector, criteria=criteria)
if debug_process:
im_with_pose = draw_head_pose(im_with_pose, image_points, rotation_vector, translation_vector, camera_matrix, dist_coeffs,128+64,-diff_center_x,-diff_center_y)
result_label = print_euler(rotation_vector,second_refine)
#print("refine",translation_vector)
if final_iterative:
(success, rotation_vector, translation_vector) = cv2.solvePnP(
model_points, image_points, camera_matrix, dist_coeffs,rotation_vector ,translation_vector,flags=cv2.SOLVEPNP_ITERATIVE)
if success:
result_label = print_euler(rotation_vector,"SOLVEPNP_ITERATIVE")
else:
raise gr.Warning("final_iterative faild")
#draw final one
if rotation_vector is not None:
im_with_pose = draw_head_pose(im_with_pose, image_points, rotation_vector, translation_vector, camera_matrix, dist_coeffs,255,-diff_center_x,-diff_center_y)
# mediapipe metrix
#print("opencv",translation_vector)
if draw_base_model:
if fit_base_model:
im_with_pose=plot_model(im_with_pose,cordinates[0][0],cordinates[0][1],chin_distance)
else:
im_with_pose=plot_model(im_with_pose)
return cv2.cvtColor(im_with_pose,cv2.COLOR_BGR2RGB),result_label,mediapipe_first_text,mediapipe_second_text
css="""
#col-left {
margin: 0 auto;
max-width: 640px;
}
#col-right {
margin: 0 auto;
max-width: 640px;
}
.grid-container {
display: flex;
align-items: center;
justify-content: center;
gap:10px
}
.image {
width: 128px;
height: 128px;
object-fit: cover;
}
.text {
font-size: 16px;
}
"""
#css=css,
with gr.Blocks(css=css, elem_id="demo-container") as demo:
with gr.Column():
gr.HTML(read_file("demo_header.html"))
gr.HTML(read_file("demo_tools.html"))
with gr.Row():
with gr.Column():
image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB',elem_id="image_upload", type="pil", label="Image")
with gr.Row(elem_id="prompt-container", equal_height=False):
with gr.Row():
btn = gr.Button("Pose Estimate", elem_id="run_button",variant="primary")
with gr.Accordion(label="Advanced Settings", open=True):
#need better landmarker
base_image = gr.Image(sources=['upload','clipboard'],image_mode='RGB',elem_id="image_upload", type="pil", label="Image",visible=False)
with gr.Row( equal_height=True):
camera_fov = gr.Slider(info="not effect mediapipe,nose-chin x multiply",
label="Multiply value",
minimum=0.1,
maximum=2.0,
step=0.01,
value=1.2)
double_check_offset_center = gr.Checkbox(label="offset center point",value=True,info="move center and detect again(usually more accurate)")
z_multiply = gr.Slider(info="nose depth",
label="Z-Multiply",
minimum=0.1,
maximum=1.5,
step=0.01,
value=0.8)
with gr.Row( equal_height=True):
draw_base_model = gr.Checkbox(label="draw base model",value=False,info="draw base model")
fit_base_model = gr.Checkbox(label="fit base model",value=False,info="This is just for visual,not use as model")
first_pnp =gr.Radio(label="PnP",choices=["None","EPNP","SQPNP","IPPE","ITERATIVE","Mediapipe"],value="EPNP")
second_refine =gr.Radio(label="PnP refine",choices=["None","LM","VVS"],value="LM")
with gr.Row( equal_height=True):
final_iterative = gr.Checkbox(label="PnP final iterative",value=False,info="sometime good")
debug_process = gr.Checkbox(label="Debug Process",value=False)
draw_mediapipe_mesh = gr.Checkbox(label="Draw mediapipe mesh",value=False)
draw_mediapipe_result = gr.Checkbox(label="Draw mediapipe result",value=False)
plot_button = gr.Button("Plot Model", elem_id="run_button")
with gr.Column():
result_image = gr.Image(height=760,label="Result", elem_id="output-animation",image_mode='RGB')
result_text = gr.Textbox(label="cv2 result")
mediapipe_first_text = gr.Textbox(label="first mediapipe result")
mediapipe_last_text = gr.Textbox(label="2nd or last mediapipe result")
btn.click(fn=process_images, inputs=[image,base_image,
camera_fov,double_check_offset_center,
draw_base_model,fit_base_model,
first_pnp,second_refine,final_iterative,debug_process,draw_mediapipe_mesh,draw_mediapipe_result
],outputs=[result_image,result_text,mediapipe_first_text,mediapipe_last_text] ,api_name='infer')
plot_button.click(fn=plot_model,inputs=[],outputs=[result_image])
example_images = [
["examples/02316230.jpg"],
["examples/00003245_00.jpg"],
["examples/00827009.jpg"],
["examples/00002062.jpg"],
["examples/00824008.jpg"],
["examples/00825000.jpg"],
["examples/00826007.jpg"],
["examples/00824006.jpg"],
["examples/00828003.jpg"],
["examples/00002200.jpg"],
["examples/00005259.jpg"],
["examples/00018022.jpg"],
["examples/img-above.jpg"],
["examples/00100265.jpg"],
["examples/00039259.jpg"],
]
example1=gr.Examples(
examples = example_images,label="Image",
inputs=[image],examples_per_page=8
)
gr.HTML(read_file("demo_footer.html"))
if __name__ == "__main__":
demo.launch()
|