Spaces:
Sleeping
Sleeping
File size: 13,510 Bytes
26a8369 eefa060 26a8369 ac18c71 26a8369 4ff0368 26a8369 c3b8348 358544d 26a8369 358544d 26a8369 4ff0368 26a8369 e5650ce 26a8369 c3b8348 9c2d729 8068250 9c2d729 358544d 61363f0 6145b5c 1c197e3 4744ae9 1c197e3 77b3a29 4bdf72f 77b3a29 9c3e34f f1fc3f3 358544d 26a8369 358544d 26a8369 c62145d 26a8369 358544d 26a8369 c3b8348 7ac791c 26a8369 c62145d 26a8369 358544d 26a8369 358544d 26a8369 c3b8348 d4681be c3b8348 26a8369 9c2d729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
# Importing required libraries
import warnings
warnings.filterwarnings("ignore")
import os
import json
import subprocess
import sys
from llama_cpp import Llama,llama_model_decoder_start_token
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent import MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from llama_cpp_agent.chat_history.messages import Roles
from llama_cpp_agent.messages_formatter import MessagesFormatter, PromptMarkers
import gradio as gr
from huggingface_hub import hf_hub_download
from typing import List, Tuple
from logger import logging
from exception import CustomExceptionHandling
# Download gguf model files
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
os.makedirs("models",exist_ok=True)
#mtsdurica/madlad400-3b-mt-Q8_0-GGUF
hf_hub_download(
repo_id="mtsdurica/madlad400-3b-mt-Q8_0-GGUF",
filename="madlad400-3b-mt-q8_0.gguf",
local_dir="./models",
)
# Define the prompt markers for Gemma 3
gemma_3_prompt_markers = {
Roles.system: PromptMarkers("", "\n"), # System prompt should be included within user message
Roles.user: PromptMarkers("<start_of_turn>user\n", "<end_of_turn>\n"),
Roles.assistant: PromptMarkers("<start_of_turn>model\n", "<end_of_turn>\n"),
Roles.tool: PromptMarkers("", ""), # If you need tool support
}
# Create the formatter
gemma_3_formatter = MessagesFormatter(
pre_prompt="", # No pre-prompt
prompt_markers=gemma_3_prompt_markers,
include_sys_prompt_in_first_user_message=True, # Include system prompt in first user message
default_stop_sequences=["<end_of_turn>", "<start_of_turn>"],
strip_prompt=False, # Don't strip whitespace from the prompt
bos_token="<bos>", # Beginning of sequence token for Gemma 3
eos_token="<eos>", # End of sequence token for Gemma 3
)
# Set the title and description
title = "Gemma Llama.cpp"
description = """Gemma 3 is a family of lightweight, multimodal open models that offers advanced capabilities like large context windows and multilingual support, enabling diverse applications on various devices."""
llm = None
llm_model = None
import ctypes
import os
import multiprocessing
import llama_cpp
def test():
llama_cpp.llama_backend_init(numa=False)
N_THREADS = multiprocessing.cpu_count()
MODEL_PATH = "models/madlad400-3b-mt-q8_0.gguf"
prompt = b"translate English to German: The house is wonderful."
lparams = llama_cpp.llama_model_default_params()
model = llama_cpp.llama_load_model_from_file(MODEL_PATH.encode("utf-8"), lparams)
vocab = llama_cpp.llama_model_get_vocab(model)
cparams = llama_cpp.llama_context_default_params()
cparams.no_perf = False
ctx = llama_cpp.llama_init_from_model(model, cparams)
sparams = llama_cpp.llama_sampler_chain_default_params()
smpl = llama_cpp.llama_sampler_chain_init(sparams)
llama_cpp.llama_sampler_chain_add(smpl, llama_cpp.llama_sampler_init_greedy())
n_past = 0
embd_inp = (llama_cpp.llama_token * (len(prompt) + 1))()
n_of_tok = llama_cpp.llama_tokenize(
vocab,
prompt,
len(prompt),
embd_inp,
len(embd_inp),
True,
True,
)
embd_inp = embd_inp[:n_of_tok]
n_ctx = llama_cpp.llama_n_ctx(ctx)
n_predict = 20
n_predict = min(n_predict, n_ctx - len(embd_inp))
input_consumed = 0
input_noecho = False
remaining_tokens = n_predict
embd = []
last_n_size = 64
last_n_tokens_data = [0] * last_n_size
n_batch = 24
last_n_repeat = 64
repeat_penalty = 1
frequency_penalty = 0.0
presence_penalty = 0.0
batch = llama_cpp.llama_batch_init(n_batch, 0, 1)
# prepare batch for encoding containing the prompt
batch.n_tokens = len(embd_inp)
for i in range(batch.n_tokens):
batch.token[i] = embd_inp[i]
batch.pos[i] = i
batch.n_seq_id[i] = 1
batch.seq_id[i][0] = 0
batch.logits[i] = False
llama_cpp.llama_encode(
ctx,
batch
)
# now overwrite embd_inp so batch for decoding will initially contain only
# a single token with id acquired from llama_model_decoder_start_token(model)
embd_inp = [llama_cpp.llama_model_decoder_start_token(model)]
while remaining_tokens > 0:
if len(embd) > 0:
batch.n_tokens = len(embd)
for i in range(batch.n_tokens):
batch.token[i] = embd[i]
batch.pos[i] = n_past + i
batch.n_seq_id[i] = 1
batch.seq_id[i][0] = 0
batch.logits[i] = i == batch.n_tokens - 1
llama_cpp.llama_decode(
ctx,
batch
)
n_past += len(embd)
embd = []
if len(embd_inp) <= input_consumed:
id = llama_cpp.llama_sampler_sample(smpl, ctx, -1)
last_n_tokens_data = last_n_tokens_data[1:] + [id]
embd.append(id)
input_noecho = False
remaining_tokens -= 1
else:
while len(embd_inp) > input_consumed:
embd.append(embd_inp[input_consumed])
last_n_tokens_data = last_n_tokens_data[1:] + [embd_inp[input_consumed]]
input_consumed += 1
if len(embd) >= n_batch:
break
if not input_noecho:
for id in embd:
size = 32
buffer = (ctypes.c_char * size)()
n = llama_cpp.llama_token_to_piece(
vocab, llama_cpp.llama_token(id), buffer, size, 0, True
)
assert n <= size
print(
buffer[:n].decode("utf-8"),
end="",
flush=True,
)
if len(embd) > 0 and embd[-1] in [llama_cpp.llama_token_eos(vocab), llama_cpp.llama_token_eot(vocab)]:
break
print()
def trans(text):
test()
yield "done"
# テキストに言語タグを付与し、バイト列に変換
input_text = f"<2ja>{text}".encode('utf-8')
# トークナイズ
tokens = llm.tokenize(input_text)
print("Tokens:", tokens)
# BOSトークンを取得し、確認
bos_token = llm.token_bos()
print("BOS Token:", bos_token)
initial_tokens = [bos_token]
initial_tokens = [1]
print("Initial Tokens:", initial_tokens)
# 生成
buf = ""
for token in llm.generate(initial_tokens, top_p=0.95, temp=0.0, repeat_penalty=1.0):
decoded = llm.detokenize([token]).decode('utf-8', errors='ignore')
buf += decoded
if token == llm.token_eos():
break
return buf
# テキストに言語タグを付与し、バイト列に変換
input_text = f"<2ja>{text}".encode('utf-8')
# トークナイズ
tokens = llm.tokenize(input_text)
print("Tokens:", tokens)
# BOSトークンを使用(デコーダーのみのモデルを想定)
initial_tokens = [llm.token_bos()]
# 生成
buf = ""
for token in llm.generate(initial_tokens, top_p=0.95, temp=0.0, repeat_penalty=1.0):
decoded = llm.detokenize([token]).decode('utf-8', errors='ignore')
buf += decoded
if token == llm.token_eos():
break
return buf
input_text = f"<2ja>{text}".encode('utf-8')
tokens = llm.tokenize(input_text)
print("Tokens:", tokens)
initial_tokens = [llm.decoder_start_token()]
print("Initial Tokens:", initial_tokens)
return text
llama = llm
text = f"<2ja>{text}".encode()
tokens = llama.tokenize(text)
llama.encode(tokens)
tokens = [llama.decoder_start_token()]
buf = ""
for token in llama.generate(tokens, top_k=0, top_p=0.95, temp=0, repeat_penalty=1.0):
buf += llama.detokenize([token]).decode()
if token == llama.token_eos():
break
return buf
def respond(
message: str,
history: List[Tuple[str, str]],
model: str,
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
top_k: int,
repeat_penalty: float,
):
"""
Respond to a message using the Gemma3 model via Llama.cpp.
Args:
- message (str): The message to respond to.
- history (List[Tuple[str, str]]): The chat history.
- model (str): The model to use.
- system_message (str): The system message to use.
- max_tokens (int): The maximum number of tokens to generate.
- temperature (float): The temperature of the model.
- top_p (float): The top-p of the model.
- top_k (int): The top-k of the model.
- repeat_penalty (float): The repetition penalty of the model.
Returns:
str: The response to the message.
"""
try:
# Load the global variables
global llm
global llm_model
#llama = Llama("madlad400-3b-mt-q8_0.gguf")
# Load the model
if llm is None or llm_model != model:
llm = Llama(
model_path=f"models/{model}",
flash_attn=False,
n_gpu_layers=0,
n_batch=8,
n_ctx=2048,
n_threads=8,
n_threads_batch=8,
)
llm_model = model
return trans(message)
provider = LlamaCppPythonProvider(llm)
# Create the agent
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
# predefined_messages_formatter_type=GEMMA_2,
custom_messages_formatter=gemma_3_formatter,
debug_output=True,
)
# Set the settings like temperature, top-k, top-p, max tokens, etc.
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
# Add the chat history
for msn in history:
user = {"role": Roles.user, "content": msn[0]}
assistant = {"role": Roles.assistant, "content": msn[1]}
messages.add_message(user)
messages.add_message(assistant)
# Get the response stream
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False,
)
# Log the success
logging.info("Response stream generated successfully")
# Generate the response
outputs = ""
for output in stream:
outputs += output
yield outputs
# Handle exceptions that may occur during the process
except Exception as e:
# Custom exception handling
raise CustomExceptionHandling(e, sys) from e
# Create a chat interface
demo = gr.ChatInterface(
respond,
examples=[["What is the capital of France?"], ["Tell me something about artificial intelligence."], ["What is gravity?"]],
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters", open=False, render=False
),
additional_inputs=[
gr.Dropdown(
choices=[
"madlad400-3b-mt-q8_0.gguf",
],
value="madlad400-3b-mt-q8_0.gguf",
label="Model",
info="Select the AI model to use for chat",
),
gr.Textbox(
value="You are a helpful assistant.",
label="System Prompt",
info="Define the AI assistant's personality and behavior",
lines=2,
),
gr.Slider(
minimum=512,
maximum=2048,
value=1024,
step=1,
label="Max Tokens",
info="Maximum length of response (higher = longer replies)",
),
gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Creativity level (higher = more creative, lower = more focused)",
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
info="Nucleus sampling threshold",
),
gr.Slider(
minimum=1,
maximum=100,
value=40,
step=1,
label="Top-k",
info="Limit vocabulary choices to top K tokens",
),
gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition Penalty",
info="Penalize repeated words (higher = less repetition)",
),
],
theme="Ocean",
submit_btn="Send",
stop_btn="Stop",
title=title,
description=description,
chatbot=gr.Chatbot(scale=1, show_copy_button=True),
flagging_mode="never",
)
# Launch the chat interface
if __name__ == "__main__":
demo.launch(debug=False)
test()
|