import torch from diffusers import FluxInpaintPipeline from diffusers.utils import load_image from PIL import Image import sys import numpy as np import json import os import spaces device = "cuda" pipeline_device = 0 if torch.cuda.is_available() else -1 # TODO mix above torch_dtype = torch.float16 debug = True @spaces.GPU def make_inpaint_condition(image, image_mask): image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0 if image.shape[0:1] != image_mask.shape[0:1]: print("error image and image_mask must have the same image size") return None image[image_mask > 0.5] = -1.0 # set as masked pixel image = image.cpu().numpy() # torch.Tensor を NumPy 配列に変換 image = (image * 255).astype(np.uint8) # 0~1 の範囲を 0~255 に戻し、uint8 型にキャスト image = image.transpose(0, 2, 3, 1) # (1, 3, H, W) から (1, H, W, 3) に形状を変更 return image[0] @spaces.GPU def process_image(image,mask_image,prompt="a girl",negative_prompt="",model_id="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,num_inference_steps=4): if image == None: return None #control_image=make_inpaint_condition(image,mask_image) #mask_image.save("_mask_image.jpg") #image = control_image pipe = FluxInpaintPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) pipe.to(device) #batch_size =1 generators = [] generator = torch.Generator(device).manual_seed(seed) generators.append(generator) output = pipe(prompt=prompt, image=image, mask_image=mask_image,generator=generator,strength=strength) return output.images[0] if __name__ == "__main__": image = Image.open(sys.argv[1]) mask = Image.open(sys.argv[2]) output = process_image(image,mask) output.save(sys.argv[3])