Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from diffusers import FluxInpaintPipeline | |
from diffusers.utils import load_image | |
from PIL import Image | |
import sys | |
import numpy as np | |
import json | |
import os | |
import spaces | |
device = "cuda" | |
pipeline_device = 0 if torch.cuda.is_available() else -1 # TODO mix above | |
torch_dtype = torch.float16 | |
debug = True | |
def make_inpaint_condition(image, image_mask): | |
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 | |
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0 | |
if image.shape[0:1] != image_mask.shape[0:1]: | |
print("error image and image_mask must have the same image size") | |
return None | |
image[image_mask > 0.5] = -1.0 # set as masked pixel | |
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
return image | |
def process_image(image,mask_image,prompt="a girl",negative_prompt="",model_id="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,num_inference_steps=4): | |
#control_image=make_inpaint_condition(image,mask_image) | |
#image.save("_control.jpg") | |
if image == None: | |
return None | |
pipe = FluxInpaintPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) | |
#batch_size =1 | |
generators = [] | |
generator = torch.Generator(device).manual_seed(seed) | |
generators.append(generator) | |
output = pipe(prompt=prompt, image=image, mask_image=mask_image,generator=generator) | |
return output.images[0] | |
if __name__ == "__main__": | |
image = Image.open(sys.argv[1]) | |
mask = Image.open(sys.argv[2]) | |
output = process_image(image,mask) | |
output.save(sys.argv[3]) |