File size: 5,760 Bytes
6453bed
 
 
 
ac1b901
6453bed
 
 
 
ac1b901
 
 
 
 
 
496dbd8
ac1b901
 
6453bed
 
 
 
 
 
 
6b2baab
 
 
 
 
5aff95e
9ad8bf0
f53d9ab
cc4a3ff
 
 
 
 
e1e11cc
cc4a3ff
 
 
 
 
 
 
 
 
 
 
6453bed
 
6b2baab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc4a3ff
 
ac1b901
6453bed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc4a3ff
 
6453bed
 
 
 
 
 
 
 
 
abba001
6453bed
 
 
 
d5f817f
 
5aff95e
 
6453bed
 
 
 
 
 
 
 
6b2baab
6453bed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b2baab
cc4a3ff
 
 
 
6b2baab
cc4a3ff
 
6453bed
495f72e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import spaces
import gradio as gr
import re
from PIL import Image

import os
import numpy as np
import shutil
#shutil.rmtree("/home/user/app/.gradio/cached_examples/23")
import torch
from diffusers import FluxImg2ImgPipeline

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device)



def sanitize_prompt(prompt):
  # Allow only alphanumeric characters, spaces, and basic punctuation
  allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
  sanitized_prompt = allowed_chars.sub("", prompt)
  return sanitized_prompt





@spaces.GPU(duration=160)
def process_images(image, image2=None,prompt="a girl",strength=0.75,seed=0,progress=gr.Progress(track_tqdm=True)):
    print("start process_images")
    progress(0, desc="Starting")
    # I'm not sure when this happen
    if not isinstance(image, dict):
        if image2 == None:
            print("empty mask")
            return image
        else:
            image = dict({'background': image, 'layers': [image2]})

    if image2!=None:
        #print("use image2")
        mask = image2
    else:
        if len(image['layers']) == 0:
            print("empty mask")
            return image
        print("use layer")
        mask = image['layers'][0]


    def process_img2img(image,mask_image,prompt="a person",strength=0.75,seed=0,num_inference_steps=4):
        print("start  process_img2img")
        if image == None:
            print("empty input image returned")
            return None

        generators = []
        generator = torch.Generator(device).manual_seed(seed)
        generators.append(generator)
        # more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline
        print(prompt)
        output = pipe(prompt=prompt, image=image,generator=generator,strength=strength
                    ,guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=512)

        # TODO support mask
        return output.images[0]

    output = process_img2img(image["background"],mask,prompt,strength,seed)
   
    print("end process_images")
    return output
    

def read_file(path: str) -> str:
    with open(path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content

def example_out(image,image_mask,prompt,strength,example_id):
    # input
    #parent,file=os.path.split(image_mask) # image is complex dict
    #base,ext = os.path.splitext(file)
    #key = base.split("_")[0]
    return f"images/{example_id}.jpg"
    #loaded_image =  Image.open(f"images/{example_id}.jpg")
    #return loaded_image
    #return np.array(loaded_image)

css="""
#col-left {
    margin: 0 auto;
    max-width: 640px;
}
#col-right {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css, elem_id="demo-container") as demo:
    with gr.Column():
        gr.HTML(read_file("demo_header.html"))
    with gr.Row():
                with gr.Column():
                    image = gr.ImageEditor(height=800,sources=['upload','clipboard'],transforms=[],image_mode='RGB', layers=False,  elem_id="image_upload", type="pil", label="Upload",brush=gr.Brush(colors=["#fff"], color_mode="fixed"))
                    with gr.Row(elem_id="prompt-container",  equal_height=False):
                        with gr.Row():
                            prompt = gr.Textbox(label="Prompt",value="a eyes closed girl,shut eyes",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt")
                            
                    btn = gr.Button("Img2Img", elem_id="run_button",variant="primary")
                    
                    image_mask = gr.Image(sources=['upload','clipboard'],  elem_id="mask_upload", type="pil", label="Mask_Upload",height=400, value=None)
                    with gr.Accordion(label="Advanced Settings", open=False):
                        with gr.Row( equal_height=True):
                            strength = gr.Number(value=0.75, minimum=0, maximum=1.0, step=0.01, label="strength")
                            seed = gr.Number(value=0, minimum=0, step=1, label="seed")
                        #models = ["black-forest-labs/FLUX.1-schnell"]
                        #inpaint_model = gr.Dropdown(label="modes", choices=models, value="black-forest-labs/FLUX.1-schnell") 
                        id_input=gr.Text(label="Name", visible=False)
                            
                with gr.Column():
                    image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="jpg")

                    
            

    btn.click(fn=process_images, inputs=[image, image_mask,prompt,strength,seed], outputs =image_out, api_name='infer')
    gr.Examples(
               examples=[
                    #["images/00547245_99.jpg", "images/00547245_99_mask.jpg","a beautiful girl,eyes closed",0.8,"images/00547245.jpg"],
                    #["images/00538245_paint.jpg", "images/00538245_mask.jpg","a beautiful girl,wearing t-shirt",0.7,"images/00538245.jpg"],
                    #["images/00207245_18.jpg", "images/00207245_18_mask.jpg","a beautiful girl,mouth opened",0.2,"images/00207245.jpg"]
                         ]
,
                #fn=example_out,
                inputs=[image,image_mask,prompt,strength,image_out],
                #outputs=[test_out],
                #cache_examples=False,
    )
    gr.HTML(
        """
            
        """
    )
    """gr.on(
        triggers=[btn.click, prompt.submit],
        fn = process_images,
        inputs = [image, image_mask, prompt, strength, seed],
        outputs = [image_out]
    )"""

    demo.launch()