Spaces:
Runtime error
Runtime error
update
Browse files
app.py
CHANGED
@@ -6,104 +6,51 @@ import spaces
|
|
6 |
|
7 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
8 |
if not huggingface_token:
|
9 |
-
|
10 |
-
print("no HUGGINGFACE_TOKEN if you need set secret ")
|
11 |
-
#raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
|
12 |
|
|
|
13 |
model_id = "microsoft/Phi-3-mini-128k-instruct"
|
14 |
-
|
15 |
-
device = "auto" #
|
16 |
dtype = torch.bfloat16
|
17 |
|
18 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id
|
19 |
-
|
20 |
-
|
21 |
-
import time
|
22 |
-
time.sleep(10)
|
23 |
-
|
24 |
|
25 |
print(model_id,device,dtype)
|
26 |
-
|
27 |
-
contents = []
|
28 |
-
|
29 |
-
def call_generate_text(prompt, system_message="You are a helpful assistant."):
|
30 |
-
|
31 |
-
print(histories)
|
32 |
-
print(contents)
|
33 |
-
|
34 |
-
if prompt =="":
|
35 |
-
print("empty prompt return")
|
36 |
-
return ""
|
37 |
-
global initialized
|
38 |
-
if not initialized:
|
39 |
-
initialized = True
|
40 |
-
#return
|
41 |
-
try:
|
42 |
-
text = generate_text(prompt,system_message)
|
43 |
-
contents.append(text)
|
44 |
-
return text
|
45 |
-
except RuntimeError as e:
|
46 |
-
print(f"An unexpected error occurred: {e}")
|
47 |
-
|
48 |
-
return ""
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
initialized = False
|
53 |
-
|
54 |
-
iface = gr.Interface(
|
55 |
-
fn=call_generate_text,
|
56 |
-
inputs=[
|
57 |
-
gr.Textbox(lines=3, label="Input Prompt"),
|
58 |
-
gr.Textbox(lines=2, label="System Message", value="You are a helpful assistant."),
|
59 |
-
],
|
60 |
-
outputs=gr.Textbox(label="Generated Text"),
|
61 |
-
title="Phi-3-mini-128k-instruct",
|
62 |
-
description="Phi-3-mini-128k-instruct",
|
63 |
-
)
|
64 |
-
print("Initialized")
|
65 |
-
|
66 |
-
# keeping model seems make crash
|
67 |
-
|
68 |
-
@spaces.GPU(duration=100)
|
69 |
def generate_text(prompt, system_message="You are a helpful assistant."):
|
70 |
-
#print(prompt,system_message)
|
71 |
-
|
72 |
-
global histories
|
73 |
-
|
74 |
model = AutoModelForCausalLM.from_pretrained(
|
75 |
-
model_id
|
76 |
)
|
77 |
-
|
78 |
-
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device) #pipeline has not to(device)
|
79 |
|
80 |
messages = [
|
81 |
{"role": "system", "content": system_message},
|
|
|
82 |
]
|
83 |
-
|
84 |
-
messages += histories
|
85 |
-
|
86 |
-
user_message = {"role": "user", "content": prompt}
|
87 |
|
88 |
-
messages += [user_message]
|
89 |
-
|
90 |
-
#print(messages)
|
91 |
-
|
92 |
result = text_generator(messages, max_new_tokens=256, do_sample=True, temperature=0.7)
|
93 |
|
94 |
generated_output = result[0]["generated_text"]
|
95 |
if isinstance(generated_output, list):
|
96 |
for message in reversed(generated_output):
|
97 |
if message.get("role") == "assistant":
|
98 |
-
|
99 |
-
histories += [user_message,{"role": "assistant", "content": content}]
|
100 |
-
print(f"history = {len(histories)}")
|
101 |
-
return content
|
102 |
-
|
103 |
return "No assistant response found."
|
104 |
else:
|
105 |
return "Unexpected output format."
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
if __name__ == "__main__":
|
108 |
-
print("Main")
|
109 |
iface.launch()
|
|
|
6 |
|
7 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
8 |
if not huggingface_token:
|
9 |
+
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
|
|
|
|
|
10 |
|
11 |
+
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
12 |
model_id = "microsoft/Phi-3-mini-128k-instruct"
|
13 |
+
# device_map style value auto not cuda
|
14 |
+
device = "auto" #torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
dtype = torch.bfloat16
|
16 |
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
print(model_id,device,dtype)
|
20 |
+
@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def generate_text(prompt, system_message="You are a helpful assistant."):
|
|
|
|
|
|
|
|
|
22 |
model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
model_id, torch_dtype=dtype,device_map=device, token=huggingface_token
|
24 |
)
|
25 |
+
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer, torch_dtype=dtype, device_map=device)
|
|
|
26 |
|
27 |
messages = [
|
28 |
{"role": "system", "content": system_message},
|
29 |
+
{"role": "user", "content": prompt},
|
30 |
]
|
|
|
|
|
|
|
|
|
31 |
|
|
|
|
|
|
|
|
|
32 |
result = text_generator(messages, max_new_tokens=256, do_sample=True, temperature=0.7)
|
33 |
|
34 |
generated_output = result[0]["generated_text"]
|
35 |
if isinstance(generated_output, list):
|
36 |
for message in reversed(generated_output):
|
37 |
if message.get("role") == "assistant":
|
38 |
+
return message.get("content", "No content found.")
|
|
|
|
|
|
|
|
|
39 |
return "No assistant response found."
|
40 |
else:
|
41 |
return "Unexpected output format."
|
42 |
|
43 |
+
|
44 |
+
iface = gr.Interface(
|
45 |
+
fn=generate_text,
|
46 |
+
inputs=[
|
47 |
+
gr.Textbox(lines=3, label="Input Prompt"),
|
48 |
+
gr.Textbox(lines=2, label="System Message", value="You are a helpful assistant."),
|
49 |
+
],
|
50 |
+
outputs=gr.Textbox(label="Generated Text"),
|
51 |
+
title="Llama 3.1 8B Instruct Text Generation",
|
52 |
+
description="Enter a prompt and optional system message to generate text using the Llama 3.1 8B Instruct model.",
|
53 |
+
)
|
54 |
+
|
55 |
if __name__ == "__main__":
|
|
|
56 |
iface.launch()
|