Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import spaces
|
|
| 2 |
import os
|
| 3 |
import torch
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
text_generator = None
|
|
@@ -36,7 +37,7 @@ if not is_hugging_face:
|
|
| 36 |
model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
|
| 38 |
)
|
| 39 |
-
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device ) #pipeline has not to(device)
|
| 40 |
|
| 41 |
if next(model.parameters()).is_cuda:
|
| 42 |
print("The model is on a GPU")
|
|
@@ -57,9 +58,10 @@ def generate_text(messages):
|
|
| 57 |
model = AutoModelForCausalLM.from_pretrained(
|
| 58 |
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
|
| 59 |
)
|
| 60 |
-
|
|
|
|
| 61 |
result = text_generator(messages, max_new_tokens=256, do_sample=True, temperature=0.7)
|
| 62 |
-
|
| 63 |
generated_output = ""
|
| 64 |
for token in result:
|
| 65 |
generated_output += token["generated_token"]
|
|
|
|
| 2 |
import os
|
| 3 |
import torch
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 5 |
+
from transformers import TextStreamer
|
| 6 |
import gradio as gr
|
| 7 |
|
| 8 |
text_generator = None
|
|
|
|
| 37 |
model = AutoModelForCausalLM.from_pretrained(
|
| 38 |
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
|
| 39 |
)
|
| 40 |
+
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device,stream=True ) #pipeline has not to(device)
|
| 41 |
|
| 42 |
if next(model.parameters()).is_cuda:
|
| 43 |
print("The model is on a GPU")
|
|
|
|
| 58 |
model = AutoModelForCausalLM.from_pretrained(
|
| 59 |
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
|
| 60 |
)
|
| 61 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True)
|
| 62 |
+
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device ,streamer=streamer) #pipeline has not to(device)
|
| 63 |
result = text_generator(messages, max_new_tokens=256, do_sample=True, temperature=0.7)
|
| 64 |
+
print(result)
|
| 65 |
generated_output = ""
|
| 66 |
for token in result:
|
| 67 |
generated_output += token["generated_token"]
|