Spaces:
Runtime error
Runtime error
import spaces | |
import os | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import gradio as gr | |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
if not huggingface_token: | |
pass | |
print("no HUGGINGFACE_TOKEN if you need set secret ") | |
#raise ValueError("HUGGINGFACE_TOKEN environment variable is not set") | |
model_id = "google/gemma-2-9b-it" | |
device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
dtype = torch.bfloat16 | |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token) | |
print(model_id,device,dtype) | |
histories = [] | |
#model = None | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device | |
) | |
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device) #pipeline has not to(device) | |
def generate_text(messages): | |
# model = AutoModelForCausalLM.from_pretrained( | |
# model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device | |
# ) | |
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device) #pipeline has not to(device) | |
result = text_generator(messages, max_new_tokens=256, do_sample=True, temperature=0.7) | |
generated_output = result[0]["generated_text"] | |
if isinstance(generated_output, list): | |
for message in reversed(generated_output): | |
if message.get("role") == "assistant": | |
content= message.get("content", "No content found.") | |
return content | |
return "No assistant response found." | |
else: | |
return "Unexpected output format." | |
def call_generate_text(message, history): | |
# history.append({"role": "user", "content": message}) | |
print(message) | |
print(history) | |
#messages = history + message | |
messages =history + [{"role":"user","content":message}] | |
try: | |
text = generate_text(history) | |
#history.append({"role": "assistant", "content": text}) | |
return text | |
except RuntimeError as e: | |
print(f"An unexpected error occurred: {e}") | |
return "" | |
demo = gr.ChatInterface(call_generate_text,type="messages") | |
if __name__ == "__main__": | |
demo.launch(share=True) | |