Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import gradio as gr | |
import spaces | |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
if not huggingface_token: | |
pass | |
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set") | |
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" | |
model_id = "microsoft/Phi-3-mini-128k-instruct" | |
# device_map style value auto not cuda | |
device = "auto" #torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
dtype = torch.bfloat16 | |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token) | |
print(model_id,device,dtype) | |
def generate_text(prompt, system_message="You are a helpful assistant."): | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, torch_dtype=dtype,device_map=device, token=huggingface_token | |
) | |
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer, torch_dtype=dtype, device_map=device) | |
messages = [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": prompt}, | |
] | |
result = text_generator(messages, max_new_tokens=256, do_sample=True, temperature=0.7) | |
generated_output = result[0]["generated_text"] | |
if isinstance(generated_output, list): | |
for message in reversed(generated_output): | |
if message.get("role") == "assistant": | |
return message.get("content", "No content found.") | |
return "No assistant response found." | |
else: | |
return "Unexpected output format." | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(lines=3, label="Input Prompt"), | |
gr.Textbox(lines=2, label="System Message", value="You are a helpful assistant."), | |
], | |
outputs=gr.Textbox(label="Generated Text"), | |
title="Llama 3.1 8B Instruct Text Generation", | |
description="Enter a prompt and optional system message to generate text using the Llama 3.1 8B Instruct model.", | |
) | |
if __name__ == "__main__": | |
iface.launch() |