# Copyright 2024-2025 Akihito Miyazaki. # This code is derived from the DuckDuckGoSearchTool class, # originally part of the HuggingFace smolagents library. # https://github.com/huggingface/smolagents # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import threading from typing import Optional from dotenv import load_dotenv import gradio as gr from smolagents import ( CodeAgent, LiteLLMModel, DuckDuckGoSearchTool, ) from smolagents.agent_types import AgentText, AgentImage, AgentAudio from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types from huggingface_hub import InferenceClient from extra_search_tools import ( PrioritySearchTool, BraveSearchTool, GoogleCustomSearchTool, ) def hf_chat(api_key, model, text): client = InferenceClient(api_key=api_key) messages = [ { "role": "user", "content": text, } ] stream = client.chat.completions.create( model=model, messages=messages, max_tokens=6000, stream=False ) return stream.choices[0].message.content load_dotenv(override=True) # login(os.getenv("HF_TOKEN")) append_answer_lock = threading.Lock() # without below chat will duplicate custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"} model = LiteLLMModel( "groq/llama3-8b-8192", api_base="https://api.groq.com/openai/v1", max_completion_tokens=500, api_key=os.getenv("GROQ_API_KEY"), # Groq API ) search_tool = PrioritySearchTool( [ DuckDuckGoSearchTool(), GoogleCustomSearchTool("YOUR_ENGINE_KEY"), BraveSearchTool(), ], "history.json", ) WEB_TOOLS = [search_tool] max_steps = 1 # Agent creation in a factory function def create_agent(): print("create agent") """Creates a fresh agent instance for each session""" return CodeAgent( model=model, tools=WEB_TOOLS, max_steps=max_steps, verbosity_level=1, ) def stream_to_gradio( agent, task: str, reset_agent_memory: bool = False, additional_args: Optional[dict] = None, ): """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" steps = 0 for step_log in agent.run( task, stream=True, reset=reset_agent_memory, additional_args=additional_args ): # I dont know the reason but call more steps steps += 1 if steps <= max_steps: for message in pull_messages_from_step( step_log, ): yield message final_answer = step_log # Last log is the run's final_answer final_answer = handle_agent_output_types(final_answer) # print(final_answer) if isinstance(final_answer, AgentText): yield gr.ChatMessage( role="assistant", content=f"**Final answer:**\n{final_answer.to_string()}", ) elif isinstance(final_answer, AgentImage): yield gr.ChatMessage( role="assistant", content={"path": final_answer.to_string(), "mime_type": "image/png"}, ) elif isinstance(final_answer, AgentAudio): yield gr.ChatMessage( role="assistant", content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, ) else: yield gr.ChatMessage( role="assistant", content=f"**Final answer:** {str(final_answer)}" ) class GradioUI: """A one-line interface to launch your agent in Gradio""" def __init__(self, file_upload_folder: str | None = None): self.file_upload_folder = file_upload_folder if self.file_upload_folder is not None: if not os.path.exists(file_upload_folder): os.mkdir(file_upload_folder) def interact_with_agent(self, prompt, messages, session_state): # Get or create session-specific agent if "agent" not in session_state: session_state["agent"] = create_agent() messages.append(gr.ChatMessage(role="user", content=prompt)) yield messages # Use session's agent instance for msg in stream_to_gradio( session_state["agent"], task=prompt, reset_agent_memory=False ): messages.append(msg) pass yield messages yield messages def launch(self, **kwargs): with gr.Blocks(theme="ocean", fill_height=True) as demo: gr.Markdown("""# Smolagents - ExtraSearchtools! - [Google Custom Search](https://developers.google.com/custom-search/v1/overview) tool - [Brave Search](https://brave.com/search/api/) tool - PrioritySearchTool - try duckduckgo fist and then use google - PrioritySearchTool - json-save function Built with [smolagents](https://github.com/huggingface/smolagents).This Demo only work duckduckgo if it's not rate-limited.Duplicate and set your own secret key """) # Add session state to store session-specific data session_state = gr.State({}) # Initialize empty state for each session chatbot = gr.Chatbot( label="ExtraSearchtools", type="messages", avatar_images=( None, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png", ), scale=1, ) text_input = gr.Textbox( lines=1, label="Your request", value="What is smolagents?" ) text_input.submit( self.interact_with_agent, # Include session_state in function calls [text_input, chatbot, gr.State({})], [chatbot], ) demo.launch(debug=True, share=True, **kwargs) if __name__ == "__main__": GradioUI().launch() # not support auto update restart by yourself :AttributeError: module '__main__' has no attribute 'demo'