File size: 6,528 Bytes
ca5d696 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# Copyright 2024-2025 Akihito Miyazaki.
# This code is derived from the DuckDuckGoSearchTool class,
# originally part of the HuggingFace smolagents library.
# https://github.com/huggingface/smolagents
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import threading
from typing import Optional
from dotenv import load_dotenv
import gradio as gr
from smolagents import (
CodeAgent,
LiteLLMModel,
DuckDuckGoSearchTool,
)
from smolagents.agent_types import AgentText, AgentImage, AgentAudio
from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types
from huggingface_hub import InferenceClient
from extra_search_tools import (
PrioritySearchTool,
BraveSearchTool,
GoogleCustomSearchTool,
)
def hf_chat(api_key, model, text):
client = InferenceClient(api_key=api_key)
messages = [
{
"role": "user",
"content": text,
}
]
stream = client.chat.completions.create(
model=model, messages=messages, max_tokens=6000, stream=False
)
return stream.choices[0].message.content
load_dotenv(override=True)
# login(os.getenv("HF_TOKEN"))
append_answer_lock = threading.Lock()
# without below chat will duplicate
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}
model = LiteLLMModel(
"groq/llama3-8b-8192",
api_base="https://api.groq.com/openai/v1",
max_completion_tokens=500,
api_key=os.getenv("GROQ_API_KEY"), # Groq API
)
search_tool = PrioritySearchTool(
[
DuckDuckGoSearchTool(),
GoogleCustomSearchTool("YOUR_ENGINE_KEY"),
BraveSearchTool(),
],
"history.json",
)
WEB_TOOLS = [search_tool]
max_steps = 1
# Agent creation in a factory function
def create_agent():
print("create agent")
"""Creates a fresh agent instance for each session"""
return CodeAgent(
model=model,
tools=WEB_TOOLS,
max_steps=max_steps,
verbosity_level=1,
)
def stream_to_gradio(
agent,
task: str,
reset_agent_memory: bool = False,
additional_args: Optional[dict] = None,
):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
steps = 0
for step_log in agent.run(
task, stream=True, reset=reset_agent_memory, additional_args=additional_args
):
# I dont know the reason but call more steps
steps += 1
if steps <= max_steps:
for message in pull_messages_from_step(
step_log,
):
yield message
final_answer = step_log # Last log is the run's final_answer
final_answer = handle_agent_output_types(final_answer)
# print(final_answer)
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:**\n{final_answer.to_string()}",
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "image/png"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
)
else:
yield gr.ChatMessage(
role="assistant", content=f"**Final answer:** {str(final_answer)}"
)
class GradioUI:
"""A one-line interface to launch your agent in Gradio"""
def __init__(self, file_upload_folder: str | None = None):
self.file_upload_folder = file_upload_folder
if self.file_upload_folder is not None:
if not os.path.exists(file_upload_folder):
os.mkdir(file_upload_folder)
def interact_with_agent(self, prompt, messages, session_state):
# Get or create session-specific agent
if "agent" not in session_state:
session_state["agent"] = create_agent()
messages.append(gr.ChatMessage(role="user", content=prompt))
yield messages
# Use session's agent instance
for msg in stream_to_gradio(
session_state["agent"], task=prompt, reset_agent_memory=False
):
messages.append(msg)
pass
yield messages
yield messages
def launch(self, **kwargs):
with gr.Blocks(theme="ocean", fill_height=True) as demo:
gr.Markdown("""# Smolagents - ExtraSearchtools!
- [Google Custom Search](https://developers.google.com/custom-search/v1/overview) tool
- [Brave Search](https://brave.com/search/api/) tool
- PrioritySearchTool - try duckduckgo fist and then use google
- PrioritySearchTool - json-save function
Built with [smolagents](https://github.com/huggingface/smolagents).This Demo only work duckduckgo if it's not rate-limited.Duplicate and set your own secret key
""")
# Add session state to store session-specific data
session_state = gr.State({}) # Initialize empty state for each session
chatbot = gr.Chatbot(
label="ExtraSearchtools",
type="messages",
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
),
scale=1,
)
text_input = gr.Textbox(
lines=1, label="Your request", value="What is smolagents?"
)
text_input.submit(
self.interact_with_agent,
# Include session_state in function calls
[text_input, chatbot, gr.State({})],
[chatbot],
)
demo.launch(debug=True, share=True, **kwargs)
if __name__ == "__main__":
GradioUI().launch() # not support auto update restart by yourself :AttributeError: module '__main__' has no attribute 'demo'
|