File size: 6,528 Bytes
ca5d696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright 2024-2025 Akihito Miyazaki.
# This code is derived from the DuckDuckGoSearchTool class,
# originally part of the HuggingFace smolagents library.
# https://github.com/huggingface/smolagents
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import threading
from typing import Optional

from dotenv import load_dotenv
import gradio as gr
from smolagents import (
    CodeAgent,
    LiteLLMModel,
    DuckDuckGoSearchTool,
)
from smolagents.agent_types import AgentText, AgentImage, AgentAudio
from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types
from huggingface_hub import InferenceClient


from extra_search_tools import (
    PrioritySearchTool,
    BraveSearchTool,
    GoogleCustomSearchTool,
)


def hf_chat(api_key, model, text):
    client = InferenceClient(api_key=api_key)
    messages = [
        {
            "role": "user",
            "content": text,
        }
    ]

    stream = client.chat.completions.create(
        model=model, messages=messages, max_tokens=6000, stream=False
    )

    return stream.choices[0].message.content


load_dotenv(override=True)
# login(os.getenv("HF_TOKEN"))

append_answer_lock = threading.Lock()

# without below chat will duplicate
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}

model = LiteLLMModel(
    "groq/llama3-8b-8192",
    api_base="https://api.groq.com/openai/v1",
    max_completion_tokens=500,
    api_key=os.getenv("GROQ_API_KEY"),  # Groq API
)

search_tool = PrioritySearchTool(
    [
        DuckDuckGoSearchTool(),
        GoogleCustomSearchTool("YOUR_ENGINE_KEY"),
        BraveSearchTool(),
    ],
    "history.json",
)
WEB_TOOLS = [search_tool]

max_steps = 1


# Agent creation in a factory function
def create_agent():
    print("create agent")
    """Creates a fresh agent instance for each session"""
    return CodeAgent(
        model=model,
        tools=WEB_TOOLS,
        max_steps=max_steps,
        verbosity_level=1,
    )


def stream_to_gradio(
    agent,
    task: str,
    reset_agent_memory: bool = False,
    additional_args: Optional[dict] = None,
):
    """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
    steps = 0
    for step_log in agent.run(
        task, stream=True, reset=reset_agent_memory, additional_args=additional_args
    ):
        # I dont know the reason but call more steps
        steps += 1
        if steps <= max_steps:
            for message in pull_messages_from_step(
                step_log,
            ):
                yield message

    final_answer = step_log  # Last log is the run's final_answer
    final_answer = handle_agent_output_types(final_answer)
    # print(final_answer)
    if isinstance(final_answer, AgentText):
        yield gr.ChatMessage(
            role="assistant",
            content=f"**Final answer:**\n{final_answer.to_string()}",
        )
    elif isinstance(final_answer, AgentImage):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "image/png"},
        )
    elif isinstance(final_answer, AgentAudio):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
        )
    else:
        yield gr.ChatMessage(
            role="assistant", content=f"**Final answer:** {str(final_answer)}"
        )


class GradioUI:
    """A one-line interface to launch your agent in Gradio"""

    def __init__(self, file_upload_folder: str | None = None):
        self.file_upload_folder = file_upload_folder
        if self.file_upload_folder is not None:
            if not os.path.exists(file_upload_folder):
                os.mkdir(file_upload_folder)

    def interact_with_agent(self, prompt, messages, session_state):
        # Get or create session-specific agent
        if "agent" not in session_state:
            session_state["agent"] = create_agent()

        messages.append(gr.ChatMessage(role="user", content=prompt))
        yield messages

        # Use session's agent instance
        for msg in stream_to_gradio(
            session_state["agent"], task=prompt, reset_agent_memory=False
        ):
            messages.append(msg)
            pass
            yield messages
        yield messages

    def launch(self, **kwargs):
        with gr.Blocks(theme="ocean", fill_height=True) as demo:
            gr.Markdown("""# Smolagents - ExtraSearchtools!
- [Google Custom Search](https://developers.google.com/custom-search/v1/overview) tool
- [Brave Search](https://brave.com/search/api/) tool
- PrioritySearchTool - try duckduckgo fist and then use google
- PrioritySearchTool - json-save function
                        
Built with [smolagents](https://github.com/huggingface/smolagents).This Demo only work duckduckgo if it's not rate-limited.Duplicate and set your own secret key 
""")
            # Add session state to store session-specific data
            session_state = gr.State({})  # Initialize empty state for each session

            chatbot = gr.Chatbot(
                label="ExtraSearchtools",
                type="messages",
                avatar_images=(
                    None,
                    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
                ),
                scale=1,
            )
            text_input = gr.Textbox(
                lines=1, label="Your request", value="What is smolagents?"
            )
            text_input.submit(
                self.interact_with_agent,
                # Include session_state in function calls
                [text_input, chatbot, gr.State({})],
                [chatbot],
            )

        demo.launch(debug=True, share=True, **kwargs)


if __name__ == "__main__":
    GradioUI().launch()  # not support auto update restart by yourself :AttributeError: module '__main__' has no attribute 'demo'