from langchain.docstore.document import Document from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.retrievers import BM25Retriever # Importing required libraries import warnings warnings.filterwarnings("ignore") import datasets import os import json import subprocess import sys import joblib from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent from llama_cpp_agent import MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles import gradio as gr from huggingface_hub import hf_hub_download from typing import List, Tuple,Dict,Optional from logger import logging from exception import CustomExceptionHandling from smolagents.gradio_ui import GradioUI from smolagents import ( CodeAgent, GoogleSearchTool, Model, Tool, LiteLLMModel, ToolCallingAgent, ChatMessage,tool,MessageRole ) cache_file = "docs_processed.joblib" if os.path.exists(cache_file): docs_processed = joblib.load(cache_file) print("Loaded docs_processed from cache.") else: knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train") source_docs = [ Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]}) for doc in knowledge_base ] text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=50, add_start_index=True, strip_whitespace=True, separators=["\n\n", "\n", ".", " ", ""], ) docs_processed = text_splitter.split_documents(source_docs) joblib.dump(docs_processed, cache_file) print("Created and saved docs_processed to cache.") class RetrieverTool(Tool): name = "retriever" description = "Uses semantic search to retrieve the parts of documentation that could be most relevant to answer your query." inputs = { "query": { "type": "string", "description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.", } } output_type = "string" def __init__(self, docs, **kwargs): super().__init__(**kwargs) self.retriever = BM25Retriever.from_documents( docs, k=7, ) def forward(self, query: str) -> str: assert isinstance(query, str), "Your search query must be a string" docs = self.retriever.invoke( query, ) return "\nRetrieved documents:\n" + "".join( [ f"\n\n===== Document {str(i)} =====\n" + str(doc.page_content) for i, doc in enumerate(docs) ] ) retriever_tool = RetrieverTool(docs_processed) # Download gguf model files huggingface_token = os.getenv("HUGGINGFACE_TOKEN") hf_hub_download( repo_id="bartowski/google_gemma-3-1b-it-GGUF", filename="google_gemma-3-1b-it-Q6_K.gguf", local_dir="./models", ) hf_hub_download( repo_id="bartowski/google_gemma-3-1b-it-GGUF", filename="google_gemma-3-1b-it-Q5_K_M.gguf", local_dir="./models", ) # Set the title and description title = "Gemma Llama.cpp" description = """Gemma 3 is a family of lightweight, multimodal open models that offers advanced capabilities like large context windows and multilingual support, enabling diverse applications on various devices.""" llm = None llm_model = None query_system = """ You are a query rewriter. Your task is to convert a user's question into a concise search query suitable for information retrieval. The goal is to identify the most important keywords for a search engine. Here are some examples: User Question: What is transformer? Search Query: transformer User Question: How does a transformer model work in natural language processing? Search Query: transformer model natural language processing User Question: What are the advantages of using transformers over recurrent neural networks? Search Query: transformer vs recurrent neural network advantages User Question: Explain the attention mechanism in transformers. Search Query: transformer attention mechanism User Question: What are the different types of transformer architectures? Search Query: transformer architectures User Question: What is the history of the transformer model? Search Query: transformer model history """ def to_query(provider,question): try: agent = LlamaCppAgent( provider, system_prompt=f"{query_system}", predefined_messages_formatter_type=MessagesFormatterType.GEMMA_2, debug_output=True, ) message=""" Now, rewrite the following question: User Question: %s Search Query: """%question print("") print(message) settings = provider.get_provider_default_settings() messages = BasicChatHistory() result = agent.get_chat_response( message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=False, print_output=False, ) return result except Exception as e: # Custom exception handling raise CustomExceptionHandling(e, sys) from e def respond( message: str, history: List[Tuple[str, str]], model: str, system_message: str, max_tokens: int, temperature: float, top_p: float, top_k: int, repeat_penalty: float, ): """ Respond to a message using the Gemma3 model via Llama.cpp. Args: - message (str): The message to respond to. - history (List[Tuple[str, str]]): The chat history. - model (str): The model to use. - system_message (str): The system message to use. - max_tokens (int): The maximum number of tokens to generate. - temperature (float): The temperature of the model. - top_p (float): The top-p of the model. - top_k (int): The top-k of the model. - repeat_penalty (float): The repetition penalty of the model. Returns: str: The response to the message. """ try: # Load the global variables global llm global llm_model # Load the model if llm is None or llm_model != model: llm = Llama( model_path=f"models/{model}", flash_attn=False, n_gpu_layers=0, n_batch=8, n_ctx=2048, n_threads=2, n_threads_batch=2, ) llm_model = model provider = LlamaCppPythonProvider(llm) query = to_query(provider,message) print("") print(f"from {message} to {query}") text = retriever_tool(query=f"{query}") retriever_system=""" You are an AI assistant that answers questions based on documents provided by the user. Wait for the user to send a document. Once you receive the document, carefully read its contents and then answer the following question: Question: %s [Wait for user's message containing the document] """ % message # Create the agent agent = LlamaCppAgent( provider, system_prompt=f"{retriever_system}", predefined_messages_formatter_type=MessagesFormatterType.GEMMA_2, debug_output=True, ) # Set the settings like temperature, top-k, top-p, max tokens, etc. settings = provider.get_provider_default_settings() settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.max_tokens = max_tokens settings.repeat_penalty = repeat_penalty settings.stream = True messages = BasicChatHistory() # Add the chat history for msn in history: user = {"role": Roles.user, "content": msn[0]} assistant = {"role": Roles.assistant, "content": msn[1]} messages.add_message(user) messages.add_message(assistant) # Get the response stream stream = agent.get_chat_response( text, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False, ) # Log the success logging.info("Response stream generated successfully") # Generate the response outputs = "" for output in stream: outputs += output yield outputs # Handle exceptions that may occur during the process except Exception as e: # Custom exception handling raise CustomExceptionHandling(e, sys) from e # Create a chat interface demo = gr.ChatInterface( respond, examples=[["What is the Transformer?"], ["Tell me About Huggingface."], ["How to upload dataset?"]], additional_inputs_accordion=gr.Accordion( label="⚙️ Parameters", open=False, render=False ), additional_inputs=[ gr.Dropdown( choices=[ "google_gemma-3-1b-it-Q6_K.gguf", "google_gemma-3-1b-it-Q5_K_M.gguf", ], value="google_gemma-3-1b-it-Q5_K_M.gguf", label="Model", info="Select the AI model to use for chat", ), gr.Textbox( value="You are a helpful assistant.", label="System Prompt", info="Define the AI assistant's personality and behavior", lines=2,visible=False ), gr.Slider( minimum=512, maximum=2048, value=1024, step=1, label="Max Tokens", info="Maximum length of response (higher = longer replies)", ), gr.Slider( minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature", info="Creativity level (higher = more creative, lower = more focused)", ), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p", info="Nucleus sampling threshold", ), gr.Slider( minimum=1, maximum=100, value=40, step=1, label="Top-k", info="Limit vocabulary choices to top K tokens", ), gr.Slider( minimum=1.0, maximum=2.0, value=1.1, step=0.1, label="Repetition Penalty", info="Penalize repeated words (higher = less repetition)", ), ], theme="Ocean", submit_btn="Send", stop_btn="Stop", title=title, description=description, chatbot=gr.Chatbot(scale=1, show_copy_button=True), flagging_mode="never", ) # Launch the chat interface if __name__ == "__main__": demo.launch(debug=False)