Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,8 +7,16 @@ from sentence_transformers import SentenceTransformer
|
|
| 7 |
|
| 8 |
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True)
|
| 9 |
|
| 10 |
-
def embed(document: str):
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
embedding = model.encode(document)
|
| 13 |
normalized_embedding = embedding / np.linalg.norm(embedding)
|
| 14 |
return normalized_embedding.tolist()
|
|
|
|
| 7 |
|
| 8 |
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True)
|
| 9 |
|
| 10 |
+
def embed(document: str) -> List[float]:
|
| 11 |
+
"""
|
| 12 |
+
Embed text using the Nomic AI model, normalize the embedding, and return a 768-dimension vector.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
document (str): The input text to embed.
|
| 16 |
+
|
| 17 |
+
Returns:
|
| 18 |
+
List[float]: The normalized embedding vector (length 768).
|
| 19 |
+
"""
|
| 20 |
embedding = model.encode(document)
|
| 21 |
normalized_embedding = embedding / np.linalg.norm(embedding)
|
| 22 |
return normalized_embedding.tolist()
|