text_embedding / app.py
AkinyemiAra's picture
Update app.py
5cc24e6 verified
raw
history blame
792 Bytes
from typing import List
import gradio as gr
import spaces
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True)
def embed(document: str):
'''This will embed text, normalize the embedding, and return a 768-dimension vector'''
embedding = model.encode(document)
normalized_embedding = embedding / np.linalg.norm(embedding)
return normalized_embedding.tolist()
with gr.Blocks() as app:
text_input = gr.Textbox(label="Enter text to embed")
output = gr.JSON(label="Normalized Text Embedding")
text_input.submit(embed, inputs=text_input, outputs=output)
if __name__ == '__main__':
app.queue().launch(server_name="0.0.0.0", show_error=True, server_port=7860, mcp_server=True)