Akbartus commited on
Commit
b6dfa7c
·
verified ·
1 Parent(s): caa3a8e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -23,6 +23,7 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
23
  if seed == -1:
24
  seed = random.randint(0, MAX_SEED)
25
  seed = int(seed)
 
26
  text = str(Translator().translate(prompt, 'English')) + "," + lora_word
27
  client = AsyncInferenceClient()
28
  image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
@@ -44,7 +45,7 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
44
  model = enable_lora(lora_model, basemodel) if process_lora else basemodel
45
  image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
46
  if image is None:
47
- return [None, None]
48
 
49
  image_path = "temp_image.jpg"
50
  image.save(image_path, format="JPEG")
@@ -54,12 +55,12 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
54
  if upscale_image_path is not None:
55
  upscale_image = Image.open(upscale_image_path)
56
  upscale_image.save("upscale_image.jpg", format="JPEG")
57
- return [image_path, "upscale_image.jpg"]
58
  else:
59
  print("Error: The scaled image path is None")
60
- return [image_path, image_path]
61
  else:
62
- return [image_path, image_path]
63
 
64
  css = """
65
  #col-container{ margin: 0 auto; max-width: 1024px;}
@@ -84,8 +85,8 @@ with gr.Blocks(css=css) as demo:
84
  scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8)
85
  steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8)
86
  seed = gr.Number(label="Seed", value=-1)
87
- print(seed)
88
 
89
  btn = gr.Button("Generate")
90
- btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res,)
 
91
  demo.launch()
 
23
  if seed == -1:
24
  seed = random.randint(0, MAX_SEED)
25
  seed = int(seed)
26
+ print(f"Selected Seed: {seed}") # Print the seed
27
  text = str(Translator().translate(prompt, 'English')) + "," + lora_word
28
  client = AsyncInferenceClient()
29
  image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
 
45
  model = enable_lora(lora_model, basemodel) if process_lora else basemodel
46
  image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
47
  if image is None:
48
+ return [None, None, "Error: Failed to generate image"]
49
 
50
  image_path = "temp_image.jpg"
51
  image.save(image_path, format="JPEG")
 
55
  if upscale_image_path is not None:
56
  upscale_image = Image.open(upscale_image_path)
57
  upscale_image.save("upscale_image.jpg", format="JPEG")
58
+ return [image_path, "upscale_image.jpg", seed]
59
  else:
60
  print("Error: The scaled image path is None")
61
+ return [image_path, image_path, seed]
62
  else:
63
+ return [image_path, image_path, seed]
64
 
65
  css = """
66
  #col-container{ margin: 0 auto; max-width: 1024px;}
 
85
  scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8)
86
  steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8)
87
  seed = gr.Number(label="Seed", value=-1)
 
88
 
89
  btn = gr.Button("Generate")
90
+ seed_output = gr.Textbox(label="Selected Seed") # Add output for seed
91
+ btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=[output_res, seed_output])
92
  demo.launch()