Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,8 +23,6 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
|
|
| 23 |
if seed == -1:
|
| 24 |
seed = random.randint(0, MAX_SEED)
|
| 25 |
seed = int(seed)
|
| 26 |
-
print("Console logging is functional.")
|
| 27 |
-
print(f"Selected Seed: {seed}") # Print the seed
|
| 28 |
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
|
| 29 |
client = AsyncInferenceClient()
|
| 30 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
|
@@ -44,13 +42,10 @@ def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
|
| 44 |
|
| 45 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
| 46 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
| 47 |
-
image,
|
| 48 |
if image is None:
|
| 49 |
-
print(f"Error: Image generation failed with seed {selected_seed}")
|
| 50 |
return [None, None]
|
| 51 |
-
|
| 52 |
-
sys.stdout.flush() # Ensure immediate console output
|
| 53 |
-
|
| 54 |
image_path = "temp_image.jpg"
|
| 55 |
image.save(image_path, format="JPEG")
|
| 56 |
|
|
@@ -66,7 +61,6 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
|
|
| 66 |
else:
|
| 67 |
return [image_path, image_path]
|
| 68 |
|
| 69 |
-
|
| 70 |
css = """
|
| 71 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
| 72 |
"""
|
|
|
|
| 23 |
if seed == -1:
|
| 24 |
seed = random.randint(0, MAX_SEED)
|
| 25 |
seed = int(seed)
|
|
|
|
|
|
|
| 26 |
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
|
| 27 |
client = AsyncInferenceClient()
|
| 28 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
|
|
|
| 42 |
|
| 43 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
| 44 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
| 45 |
+
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
| 46 |
if image is None:
|
|
|
|
| 47 |
return [None, None]
|
| 48 |
+
|
|
|
|
|
|
|
| 49 |
image_path = "temp_image.jpg"
|
| 50 |
image.save(image_path, format="JPEG")
|
| 51 |
|
|
|
|
| 61 |
else:
|
| 62 |
return [image_path, image_path]
|
| 63 |
|
|
|
|
| 64 |
css = """
|
| 65 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
| 66 |
"""
|