Spaces:
Runtime error
Runtime error
File size: 10,545 Bytes
ccb0bb0 11c81b2 ccb0bb0 11c81b2 ccb0bb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import streamlit as st
import requests
import base64
import os
import llama_index
from audio_recorder_streamlit import audio_recorder
from openai import OpenAI
from llama_index import VectorStoreIndex, SimpleDirectoryReader
os.environ['OPENAI_API_KEY'] = os.getenv("apikey")
API_KEY = os.getenv("apikey")
def RAG(text):
documents = SimpleDirectoryReader("db3").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query(text)
# Extract the text from the response
response_text = response.response if hasattr(response, 'response') else str(response)
return response_text
def linkRAGhindi(text):
new_prompt="निम्नलिखित प्रश्न के लिए सबसे उपयुक्त वेबसाइट लिंक दें"+text
documents = SimpleDirectoryReader("db1").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query(new_prompt)
# Extract the text from the response
response_text = response.response if hasattr(response, 'response') else str(response)
return response_text
def rechindi(text):
new_prompt="निम्नलिखित प्रश्न के लिए सबसे उपयुक्त वेबसाइट लिंक दें"+text
documents = SimpleDirectoryReader("db2").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query(new_prompt)
# Extract the text from the response
response_text = response.response if hasattr(response, 'response') else str(response)
return response_text
def linkRAGenglish(text):
new_prompt="Give the most appropiate website link for the following question "+text
documents = SimpleDirectoryReader("db1").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query(new_prompt)
# Extract the text from the response
response_text = response.response if hasattr(response, 'response') else str(response)
return response_text
def recenglish(text):
new_prompt="Give the most intresting other website link for the following question "+text
documents = SimpleDirectoryReader("db2").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query(new_prompt)
# Extract the text from the response
response_text = response.response if hasattr(response, 'response') else str(response)
return response_text
def transcribe_text_to_voice_english(audio_location):
client = OpenAI(api_key=API_KEY)
audio_file = open(audio_location, "rb")
transcript = client.audio.transcriptions.create(model="whisper-1", file=audio_file)
return transcript.text
def transcribe_text_to_voice_hindi(audio_location):
url = "https://api.runpod.ai/v2/faster-whisper/runsync"
with open(audio_location, "rb") as audio_file:
audio_base64 = base64.b64encode(audio_file.read()).decode('utf-8')
payload = {
"input": {
"audio_base64": audio_base64,
"model": "small",
"transcription": "plain_text",
"translate": True,
"language": "hi",
"temperature": 0,
"best_of": 5,
"beam_size": 5,
"patience": 1,
"suppress_tokens": "-1",
"condition_on_previous_text": False,
"temperature_increment_on_fallback": 0.2,
"compression_ratio_threshold": 2.4,
"logprob_threshold": -1,
"no_speech_threshold": 0.6,
"word_timestamps": False
},
"enable_vad": False
}
headers = {
"accept": "application/json",
"content-type": "application/json",
"authorization": "X01PG949AHTOVRYHLQZKSRIWN82UHBUU5JYLNAHM"
}
response = requests.post(url, json=payload, headers=headers)
response_json = response.json()
transcription = response_json["output"]["transcription"]
translation = response_json["output"]["translation"].strip().split('\n')[-1].strip()
return transcription, translation
def recommendation(text):
client = OpenAI(api_key=API_KEY)
messages = [{"role": "user", "content": text}]
response = client.chat.completions.create(model="gpt-3.5-turbo-1106", messages=messages)
return response.choices[0].message.content
def text_to_speech_ai(speech_file_path, api_response):
client = OpenAI(api_key=API_KEY)
response = client.audio.speech.create(model="tts-1",voice="nova",input=api_response)
response.stream_to_file(speech_file_path)
st.title("🚀 SHRESHTH 💬 Bhuvan Assistant")
# Radio wheel for language selection
language = st.radio("Language/भाषा",["English", "हिंदी"])
# Displaying description based on selected language
if language == "English":
mode = st.radio("Select Mode Of Input", ["Voice","Text"])
st.write("Smart - Helpful - Robust - Effortless - System for Text-to-speech and Human-like Assistance")
if mode == "Voice" or mode == "आवाज":
st.write("Click on the voice recorder and let me know how I can help you today with your Queries Regarding Bhuvan!")
audio_bytes = audio_recorder(
text="",
recording_color="#e8b62c",
neutral_color="#6aa36f",
icon_name="microphone",
icon_size="2x",
)
if audio_bytes:
# Save the Recorded File
audio_location = "audio_file.wav"
with open(audio_location, "wb") as f:
f.write(audio_bytes)
if language == "English":
text=transcribe_text_to_voice_english(audio_location)
st.write(text)
else:
text,trans=transcribe_text_to_voice_hindi(audio_location)
st.write(text)
link_response = linkRAGenglish(text)
st.write("SHRESHTH:", link_response)
api_response = RAG(text)
st.write("SHRESHTH:", api_response)
speech_file_path = 'audio_response.mp3'
text_to_speech_ai(speech_file_path, api_response)
st.audio(speech_file_path)
recctext="recommend top three other websites that could interest the user depending on this link and answer : " + link_response + api_response
recc=linkRAGenglish(recctext)
st.write("SHRESHTH:", recc)
else:
# Text input option
text_input = st.text_area("Enter your text here and press Enter", "")
if st.button("Submit"):
# Process the entered text
link_response = linkRAGenglish(text_input)
st.write("SHRESHTH:", link_response)
api_response = RAG(text_input)
st.write("SHRESHTH:", api_response)
# Read out the text response using tts
speech_file_path = 'audio_response.mp3'
text_to_speech_ai(speech_file_path, api_response)
st.audio(speech_file_path)
recctext="recommend top three other websites that could interest the user depending on this link and answer : " + link_response + api_response
recc=linkRAGenglish(recctext)
st.write("SHRESHTH:", recc)
else:
mode = st.radio("इनपुट मोड का चयन करें", ["आवाज", "टेक्स्ट"])
st.write("स्मार्ट - सहायक - मजबूत - प्रयासहीन - पाठ-से-बोल के लिए एक सिस्टम और मानव जैसी सहायता")
if mode == "Voice" or mode == "आवाज" or mode == "ভয়েস":
st.write("आवाज रेकॉर्डर पर क्लिक करें और मुझसे यह बताएं कि आज आपकी भुवन से संबंधित सवालों में मैं आपकी कैसे मदद कर सकता हूँ!")
audio_bytes = audio_recorder(
text="",
recording_color="#e8b62c",
neutral_color="#6aa36f",
icon_name="microphone",
icon_size="2x",
)
if audio_bytes:
# Save the Recorded File
audio_location = "audio_file.wav"
with open(audio_location, "wb") as f:
f.write(audio_bytes)
if language == "English":
text=transcribe_text_to_voice_english(audio_location)
st.write(text)
else:
text,trans=transcribe_text_to_voice_hindi(audio_location)
st.write(text)
link_response = linkRAGhindi(text)
st.write("श्रेष्ठ:", link_response)
api_response = RAG(text)
st.write("श्रेष्ठ:", api_response)
# Read out the text response using tts
speech_file_path = 'audio_response.mp3'
text_to_speech_ai(speech_file_path, api_response)
st.audio(speech_file_path)
recctext="recommend top three other websites that could interest the user depending on this link and answer : " + link_response + api_response
recc=rechindi(recctext)
st.write("श्रेष्ठ:", recc)
else:
# Text input option
text_input = st.text_area("आप यहाँ अपना टेक्स्ट दर्ज करें और एंटर दबाएं", "")
if st.button("एंटर"):
# Process the entered text
link_response = linkRAGhindi(text_input)
st.write("श्रेष्ठ:", link_response)
api_response = RAG(text_input)
st.write("श्रेष्ठ:", api_response)
# Read out the text response using tts
speech_file_path = 'audio_response.mp3'
text_to_speech_ai(speech_file_path, api_response)
st.audio(speech_file_path)
recctext="recommend top three other websites that could interest the user depending on this link and answer : " + link_response + api_response
recc=rechindi(recctext)
st.write("श्रेष्ठ:", recc)
|