Blog_Generator / app.py
AjithBharadwaj's picture
Update app.py
dd36b8a verified
raw
history blame
1.96 kB
import streamlit as st
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline,BitsAndBytesConfig
# quants = BitsAndBytesConfig(load_in_4bit=True)
template = ''' You are an expert Blog generator , Given the Topic , the intended audience and the maximum number of words ,
Write a blog on the given topic
Topic : {topic}
Intended Audince : {role}
Number of Words : {words}
Strictly return the output in a markdown format.
Return only the blog and do not provide any other information.'''
prompt = PromptTemplate(template = template,input_variables = ['topic','role','words'])
def main():
st.title(" :fire: Professional Blog Generator :fire:")
st.markdown(
"""
<style>
body {
background-color: #000000;;
color: white;
}
</style>
""",
unsafe_allow_html=True
)
st.sidebar.header("Input Parameters")
role = st.sidebar.text_input("Who is this intednded for ?", "Ex - Data Scientist")
topic = st.sidebar.text_input("On what Topic should the blog be on ?", "Ex - Machine Learning")
word_count = st.sidebar.slider("Number of Words", min_value=50, max_value=1000, value=200, step=50)
if st.sidebar.button("Generate Blog"):
model_id = "mistralai/Mistral-7B-Instruct-v0.2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer,max_new_tokens=1000)
hf = HuggingFacePipeline(pipeline=pipe)
chain = LLMChain(llm=hf,prompt=prompt,verbose=True)
aa = chain.invoke({"topic": topic,"words":word_count,"role":role})
st.write(aa)
if __name__ == "__main__":
main()