import os import torch from fastapi import FastAPI, Request from fastapi.responses import JSONResponse from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel from starlette.middleware.cors import CORSMiddleware # === Setup FastAPI === app = FastAPI(title="Apollo AI Backend - Qwen2-0.5B", version="4.0.0-TRULY-FIXED") # === CORS === app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # === Configuration === API_KEY = os.getenv("API_KEY", "aigenapikey1234567890") BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct" ADAPTER_PATH = "adapter" # === Load Model === print("🔧 Loading tokenizer for Qwen2-0.5B...") tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token print("🧠 Loading Qwen2-0.5B base model...") base_model = AutoModelForCausalLM.from_pretrained( BASE_MODEL, trust_remote_code=True, torch_dtype=torch.float32, device_map="cpu" ) print("🔗 Applying LoRA adapter to Qwen2-0.5B...") model = PeftModel.from_pretrained(base_model, ADAPTER_PATH) model.eval() print("✅ Qwen2-0.5B model ready!") def create_conversation_prompt(messages: list, is_force_mode: bool) -> str: """Create a conversation prompt with clear mode instructions""" if is_force_mode: system_prompt = """You are a helpful programming assistant. Give direct, complete answers with examples. Do not ask questions back to the user. Provide clear explanations and working code when relevant. When asked about Python functions, provide: 1. What the function does 2. Clear examples with output 3. Common use cases Be direct and informative.""" else: system_prompt = """You are a programming teacher focused on helping students learn through discovery. Guide students with questions and hints rather than giving direct answers. When asked about concepts: 1. Ask what they think might happen 2. Encourage them to try things out 3. Guide them to discover patterns 4. Ask follow-up questions to deepen understanding Help them learn by thinking, not by giving answers directly.""" # Build conversation conversation = f"<|im_start|>system\n{system_prompt}<|im_end|>\n" # Add conversation history (last 4 messages for context) recent_messages = messages[-4:] if len(messages) > 4 else messages for msg in recent_messages: role = msg.get("role", "") content = msg.get("content", "") conversation += f"<|im_start|>{role}\n{content}<|im_end|>\n" conversation += "<|im_start|>assistant\n" return conversation def generate_response(messages: list, is_force_mode: bool = False, max_tokens: int = 200, temperature: float = 0.7) -> str: """Generate response using the AI model""" try: # Create conversation prompt prompt = create_conversation_prompt(messages, is_force_mode) print(f"🎯 Generating {'FORCE (Direct)' if is_force_mode else 'MENTOR (Questions)'} response") print(f"🔍 Mode flag: {is_force_mode}") # Adjust parameters based on mode if is_force_mode: generation_temp = 0.3 # More focused for direct answers generation_tokens = min(max_tokens, 300) else: generation_temp = 0.5 # More creative for questions generation_tokens = min(max_tokens, 250) # Tokenize input inputs = tokenizer(prompt, return_tensors="pt", max_length=1500, truncation=True) # Generate response with torch.no_grad(): outputs = model.generate( inputs.input_ids, max_new_tokens=generation_tokens, temperature=generation_temp, do_sample=True, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, top_p=0.9, repetition_penalty=1.1, no_repeat_ngram_size=3 ) # Decode response full_response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract only the new generated part response = full_response[len(prompt):].strip() # Clean up response response = response.replace("<|im_end|>", "").strip() # Remove conversation artifacts lines = response.split('\n') clean_lines = [] for line in lines: line = line.strip() if not line.startswith(('<|im_start|>', '<|im_end|>', 'system:', 'user:', 'assistant:')): clean_lines.append(line) response = '\n'.join(clean_lines).strip() # Take first paragraph if too long if len(response) > max_tokens * 4: paragraphs = response.split('\n\n') response = paragraphs[0] if paragraphs else response[:max_tokens * 4] print(f"✅ Generated response: {response[:100]}...") # Simple validation - no template injection if not response or len(response) < 10: if is_force_mode: return "I need more specific information to provide a direct answer. Could you clarify your question?" else: return "That's a great question to explore! What do you think might be the answer? Try experimenting and see what you discover!" return response except Exception as e: print(f"❌ Generation error: {e}") if is_force_mode: return "I encountered an error generating a direct response. Please try rephrasing your question." else: return "Interesting challenge! What approach do you think might work here? Let's explore this together." # === Routes === @app.get("/") def root(): return { "message": "🤖 Apollo AI Backend v4.0-TRULY-FIXED - Qwen2-0.5B", "model": "Qwen/Qwen2-0.5B-Instruct with LoRA", "status": "ready", "modes": { "mentor": "Guides learning with questions - REALLY FIXED", "force": "Provides direct answers - REALLY FIXED" }, "fixes": "Removed all template responses, pure AI generation" } @app.get("/health") def health(): return { "status": "healthy", "model_loaded": True, "model_size": "0.5B", "version": "4.0-TRULY-FIXED" } @app.post("/v1/chat/completions") async def chat_completions(request: Request): # Validate API key auth_header = request.headers.get("Authorization", "") if not auth_header.startswith("Bearer "): return JSONResponse( status_code=401, content={"error": "Missing or invalid Authorization header"} ) token = auth_header.replace("Bearer ", "").strip() if token != API_KEY: return JSONResponse( status_code=401, content={"error": "Invalid API key"} ) # Parse request body try: body = await request.json() messages = body.get("messages", []) max_tokens = min(body.get("max_tokens", 200), 400) temperature = max(0.1, min(body.get("temperature", 0.7), 1.0)) # Get force mode flag is_force_mode = body.get("force_mode", False) print(f"🚨 REQUEST RECEIVED - force_mode: {is_force_mode}") print(f"📝 Last user message: {messages[-1].get('content', '') if messages else 'None'}") if not messages or not isinstance(messages, list): raise ValueError("Messages field is required and must be a list") except Exception as e: return JSONResponse( status_code=400, content={"error": f"Invalid request body: {str(e)}"} ) # Validate messages for i, msg in enumerate(messages): if not isinstance(msg, dict) or "role" not in msg or "content" not in msg: return JSONResponse( status_code=400, content={"error": f"Invalid message format at index {i}"} ) try: print(f"📥 Processing in {'FORCE (Direct Answer)' if is_force_mode else 'MENTOR (Guiding Questions)'} mode") # Generate response - NO POST-PROCESSING response_content = generate_response( messages=messages, is_force_mode=is_force_mode, max_tokens=max_tokens, temperature=temperature ) print(f"✅ Pure AI response generated: {response_content[:150]}...") return { "id": f"chatcmpl-apollo-{hash(str(messages)) % 10000}", "object": "chat.completion", "created": int(torch.tensor(0).item()), "model": f"qwen2-0.5b-{'force' if is_force_mode else 'mentor'}-truly-fixed", "choices": [ { "index": 0, "message": { "role": "assistant", "content": response_content }, "finish_reason": "stop" } ], "usage": { "prompt_tokens": len(str(messages)), "completion_tokens": len(response_content), "total_tokens": len(str(messages)) + len(response_content) }, "apollo_mode": "force_direct" if is_force_mode else "mentor_questions", "pure_ai_response": True } except Exception as e: print(f"❌ Chat completion error: {e}") return JSONResponse( status_code=500, content={"error": f"Internal server error: {str(e)}"} ) if __name__ == "__main__": import uvicorn print("🚀 Starting Apollo AI Backend v4.0-TRULY-FIXED") print("🧠 Model: Qwen/Qwen2-0.5B-Instruct (500M parameters)") print("🎯 Mentor Mode: Pure AI questions and guidance") print("⚡ Force Mode: Pure AI direct answers") print("🚫 NO MORE TEMPLATES - Pure AI responses only") uvicorn.run(app, host="0.0.0.0", port=7860)