Ais
commited on
Update app/main.py
Browse files- app/main.py +45 -33
app/main.py
CHANGED
@@ -1,45 +1,57 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
-
from pydantic import BaseModel
|
3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
-
from peft import PeftModel
|
5 |
import torch
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
10 |
-
tokenizer.pad_token = tokenizer.eos_token
|
11 |
-
|
12 |
model = AutoModelForCausalLM.from_pretrained(
|
13 |
-
|
14 |
-
|
|
|
15 |
trust_remote_code=True
|
16 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
model = PeftModel.from_pretrained(model, "./adapter", is_trainable=False)
|
18 |
model.eval()
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
role
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
async def chat(req: ChatRequest):
|
33 |
-
prompt = build_prompt(req.messages)
|
34 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
35 |
-
outputs = model.generate(
|
36 |
-
**inputs,
|
37 |
-
max_new_tokens=256,
|
38 |
do_sample=True,
|
39 |
temperature=0.7,
|
40 |
-
|
41 |
-
eos_token_id=tokenizer.eos_token_id
|
42 |
)
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
3 |
+
from peft import PeftModel
|
4 |
+
import json
|
5 |
+
import os
|
6 |
|
7 |
+
# Load tokenizer and base model
|
8 |
+
base_model = "Qwen/Qwen2-0.5B-Instruct"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
|
|
|
|
|
10 |
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
base_model,
|
12 |
+
device_map="cuda" if torch.cuda.is_available() else "cpu",
|
13 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
14 |
trust_remote_code=True
|
15 |
)
|
16 |
+
|
17 |
+
# Clean up adapter_config.json before loading adapter
|
18 |
+
adapter_config_path = "./adapter/adapter_config.json"
|
19 |
+
if os.path.exists(adapter_config_path):
|
20 |
+
with open(adapter_config_path, "r") as f:
|
21 |
+
adapter_config = json.load(f)
|
22 |
+
for key in ["corda_config", "eva_config", "megatron_config"]:
|
23 |
+
adapter_config.pop(key, None)
|
24 |
+
with open(adapter_config_path, "w") as f:
|
25 |
+
json.dump(adapter_config, f)
|
26 |
+
|
27 |
+
# Load adapter
|
28 |
model = PeftModel.from_pretrained(model, "./adapter", is_trainable=False)
|
29 |
model.eval()
|
30 |
|
31 |
+
# Simple chat function
|
32 |
+
def chat(prompt):
|
33 |
+
messages = [
|
34 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
35 |
+
{"role": "user", "content": prompt}
|
36 |
+
]
|
37 |
+
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
38 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
39 |
|
40 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
41 |
+
generated_ids = model.generate(
|
42 |
+
**model_inputs,
|
43 |
+
max_new_tokens=512,
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
do_sample=True,
|
45 |
temperature=0.7,
|
46 |
+
streamer=streamer
|
|
|
47 |
)
|
48 |
+
output = tokenizer.decode(generated_ids[0][model_inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
|
49 |
+
return output
|
50 |
+
|
51 |
+
# Example
|
52 |
+
if __name__ == "__main__":
|
53 |
+
while True:
|
54 |
+
prompt = input("User: ")
|
55 |
+
if prompt.lower() in ["exit", "quit"]:
|
56 |
+
break
|
57 |
+
print("AI:", chat(prompt))
|