aigen / app /main.py
Ais
Update app/main.py
18f4dad verified
raw
history blame
4.97 kB
import os
import torch
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from starlette.middleware.cors import CORSMiddleware
# === Setup FastAPI ===
app = FastAPI()
# === CORS (optional for frontend access) ===
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# === Load API Key from Hugging Face Secrets ===
API_KEY = os.getenv("API_KEY", "undefined")
# === Model Settings ===
BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct"
ADAPTER_PATH = "adapter"
print("🔧 Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
print("🧠 Loading base model on CPU...")
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
trust_remote_code=True,
torch_dtype=torch.float32
).cpu()
print("🔗 Applying LoRA adapter...")
model = PeftModel.from_pretrained(base_model, ADAPTER_PATH).cpu()
model.eval()
print("✅ Model and adapter loaded successfully.")
# === Root Route ===
@app.get("/")
def root():
return {"message": "🧠 Qwen2.5-0.5B-Instruct API is running on CPU!"}
# === Chat Completion API ===
@app.post("/v1/chat/completions")
async def chat(request: Request):
# ✅ API Key Authorization
auth_header = request.headers.get("Authorization", "")
if not auth_header.startswith("Bearer "):
return JSONResponse(status_code=401, content={"error": "Missing Bearer token in Authorization header."})
token = auth_header.replace("Bearer ", "").strip()
if token != API_KEY:
return JSONResponse(status_code=401, content={"error": "Invalid API key."})
# ✅ Parse Request
try:
body = await request.json()
messages = body.get("messages", [])
if not messages or not isinstance(messages, list):
raise ValueError("Invalid or missing 'messages' field.")
temperature = body.get("temperature", 0.7)
max_tokens = body.get("max_tokens", 512)
except Exception as e:
return JSONResponse(status_code=400, content={"error": f"Bad request: {str(e)}"})
# ✅ FIXED: Only use last 4 messages to prevent stacking
recent_messages = messages[-4:] if len(messages) > 4 else messages
# ✅ Build clean conversation prompt
formatted_prompt = ""
for message in recent_messages:
role = message.get("role", "")
content = message.get("content", "")
if role == "system":
formatted_prompt += f"<|im_start|>system\n{content}<|im_end|>\n"
elif role == "user":
formatted_prompt += f"<|im_start|>user\n{content}<|im_end|>\n"
elif role == "assistant":
formatted_prompt += f"<|im_start|>assistant\n{content}<|im_end|>\n"
# Add the assistant start token for generation
formatted_prompt += "<|im_start|>assistant\n"
print(f"🤖 Processing {len(recent_messages)} recent messages")
inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cpu")
# ✅ Generate Response
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
# ✅ FIXED: Extract ONLY the new assistant response
final_answer = decoded.split("<|im_start|>assistant\n")[-1].strip()
# Remove any end tokens or artifacts
if "<|im_end|>" in final_answer:
final_answer = final_answer.split("<|im_end|>")[0].strip()
# Remove any repeated system prompts or guidelines that leaked through
if "Guidelines:" in final_answer:
final_answer = final_answer.split("Guidelines:")[0].strip()
if "Response format:" in final_answer:
final_answer = final_answer.split("Response format:")[0].strip()
# Remove VS Code context if it leaked through
if "[VS Code Context:" in final_answer:
lines = final_answer.split('\n')
cleaned_lines = [line for line in lines if not line.strip().startswith('[VS Code Context:')]
final_answer = '\n'.join(cleaned_lines).strip()
print(f"✅ Clean response: {final_answer[:100]}...")
# ✅ OpenAI-style Response
return {
"id": "chatcmpl-local-001",
"object": "chat.completion",
"model": "Qwen2.5-0.5B-Instruct-LoRA",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": final_answer
},
"finish_reason": "stop"
}
]
}