File size: 8,310 Bytes
32aed2a
ca00702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32aed2a
 
 
ca00702
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration, pipeline
from sentence_transformers import SentenceTransformer, util
import random
import re
import nltk
from nltk.tokenize import sent_tokenize
import warnings
from transformers import logging
import os
import tensorflow as tf 
import requests

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
warnings.filterwarnings("ignore", category=FutureWarning)  
warnings.filterwarnings("ignore", category=UserWarning)    
warnings.filterwarnings("ignore")   
logging.set_verbosity_error()
tf.get_logger().setLevel('ERROR')

nltk.download('punkt')
GROQ_API_KEY="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"


class TextEnhancer:
    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        print(self.device)
        self.paraphrase_tokenizer = AutoTokenizer.from_pretrained("prithivida/parrot_paraphraser_on_T5")
        self.paraphrase_model = T5ForConditionalGeneration.from_pretrained("prithivida/parrot_paraphraser_on_T5").to(self.device)
        print("paraphraser loaded") 
        self.grammar_pipeline = pipeline(
            "text2text-generation",
            model="Grammarly/coedit-large",
            device=0 if self.device == "cuda" else -1
        )
        print("grammar check loaded") 
        self.similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2').to(self.device)
        print("sementics model loaded")
    def _evaluate_with_groq(self, passage=""):
        if not passage:
            raise ValueError("Input passage cannot be empty.")

        # Groq API setup
        headers = {
            "Authorization": f"Bearer {GROQ_API_KEY}",  # Replace GROQ_API_KEY with your actual API key.
            "Content-Type": "application/json"
        }
        payload = {
            "model": "llama3-70b-8192",
            "messages": [
                {
                    "role": "system",
                    "content": "Paraphrase this sentence to better suit it as an introductory sentence to a student's Statement of purpose. Ensure that the vocabulary and grammar is upto par. ONLY return the raw paraphrased sentence and nothing else.IF IT IS a empty string, return empty string "
                },
                {
                    "role": "user",
                    "content": f"Here is the passage: {passage}"
                }
            ],
            "temperature": 1.0,
            "max_tokens": 8192
        }

        # Sending request to Groq API
        print("Sending request to Groq API...")
        response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=payload, headers=headers)
        print("Response received.")

        # Handling the response
        if response.status_code == 200:
            data = response.json()
            try:
                segmented_text = data.get("choices", [{}])[0].get("message", {}).get("content", "")
                print("sentence paraphrase processed successfully.")
                print(segmented_text)
                return segmented_text
            except (IndexError, KeyError) as e:
                raise ValueError(f"Unexpected response structure from Groq API. Error: {str(e)}")
        else:
            raise ValueError(f"Groq API error: {response.status_code}, {response.text}")
    
    def _correct_formatting(self, sentence):
        cleaned_sentence = re.sub(r'([.,!?])\1+', r'\1', sentence)
        cleaned_sentence = cleaned_sentence.strip()
        return cleaned_sentence
    def enhance_text(self, text, min_similarity=0.8, max_variations=3):
        sent=0
        enhanced_sentences = []
        sentences = sent_tokenize(text)
        total_words = sum(len(sentence.split()) for sentence in sentences)
        print(f"generated: {total_words}") 
        for sentence in sentences:
            if not sentence.strip():
                continue
            sent+=1
                
            inputs = self.paraphrase_tokenizer(
                f"paraphrase: {sentence}",
                return_tensors="pt",
                padding=True,
                max_length=150,
                truncation=True
            ).to(self.device)
        
            outputs = self.paraphrase_model.generate(
                **inputs,
                max_length=len(sentence.split()) + 20,
                num_return_sequences=max_variations,
                num_beams=max_variations,
                temperature=0.7
            )
        
            
            paraphrases = [
                self.paraphrase_tokenizer.decode(output, skip_special_tokens=True)
                for output in outputs
            ]
            
            sentence_embedding = self.similarity_model.encode(sentence)
            paraphrase_embeddings = self.similarity_model.encode(paraphrases)
            similarities = util.cos_sim(sentence_embedding, paraphrase_embeddings)
            
            valid_paraphrases = [
                para for para, sim in zip(paraphrases, similarities[0])
                if sim >= min_similarity
            ]
            if sent in {1, len(sentences)} and valid_paraphrases:  
                gemini_feedback = self._evaluate_with_groq(valid_paraphrases[0])  
                if gemini_feedback.strip():  
                    valid_paraphrases[0] = gemini_feedback.strip()  
                                
            if valid_paraphrases:
                corrected = self.grammar_pipeline(
                    valid_paraphrases[0],
                    max_length=150,
                    num_return_sequences=1
                )[0]["generated_text"]

                corrected = self._humanize_text(corrected)
                corrected=self._correct_formatting(corrected)
                enhanced_sentences.append(corrected)
            else:
                sentence=self._correct_formatting(sentence)
                enhanced_sentences.append(sentence)
                 
        enhanced_text = ". ".join(sentence.rstrip(".") for sentence in enhanced_sentences) + "."
        return enhanced_text
    def _humanize_text(self, text):
         
        contractions = {"can't": "cannot", "won't": "will not", "I'm": "I am", "it's": "it is"}
        words = text.split()
        text = " ".join([contractions.get(word, word) if random.random() > 0.9 else word for word in words])

         
        if random.random() > 0.7:
            text = text.replace(" and ", ", and ")
        
        # Minor variations in sentence structure
        if random.random() > 0.5:
            text = text.replace(" is ", " happens to be ")
        
        return text


def create_interface():
    enhancer = TextEnhancer()
    
    def process_text(text, similarity_threshold=0.75):
        try:
            enhanced = enhancer.enhance_text(
                text,
                min_similarity=similarity_threshold / 100,
                max_variations=10
            )
            print("grammar enhanced")
            return enhanced
        except Exception as e:
            return f"Error: {str(e)}"
    
    interface = gr.Blocks()
    with interface:
        with gr.Row(elem_id="header", variant="panel"):
            gr.HTML("""
                <div style="display: flex; align-items: center; justify-content: center; gap: 10px; margin-bottom: 20px;">
                    <img src="https://raw.githubusercontent.com/juicjaane/blueai/main/logo_2.jpg" style="width: 50px; height: 50px;">
                    <h1 style="color: gold; font-size: 2em; margin: 0;">Konect U</h1>
                </div>
            """)

        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### Your SoP")
                input_text = gr.Textbox(label="Input", placeholder="Enter SoP to Paraphrase...", lines=10)
                
                submit_button = gr.Button("Paraphrase")

            with gr.Column(scale=1):
                gr.Markdown("### Paraphrased SoP")
                enhanced_text = gr.Textbox(label="SoP", lines=10)

        submit_button.click(process_text, inputs=[input_text], outputs=enhanced_text)

    return interface


if __name__ == "__main__":
    interface = create_interface()
    interface.launch(share=True)