Spaces:
Build error
Build error
File size: 8,310 Bytes
32aed2a ca00702 32aed2a ca00702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import gradio as gr
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration, pipeline
from sentence_transformers import SentenceTransformer, util
import random
import re
import nltk
from nltk.tokenize import sent_tokenize
import warnings
from transformers import logging
import os
import tensorflow as tf
import requests
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore")
logging.set_verbosity_error()
tf.get_logger().setLevel('ERROR')
nltk.download('punkt')
GROQ_API_KEY="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"
class TextEnhancer:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(self.device)
self.paraphrase_tokenizer = AutoTokenizer.from_pretrained("prithivida/parrot_paraphraser_on_T5")
self.paraphrase_model = T5ForConditionalGeneration.from_pretrained("prithivida/parrot_paraphraser_on_T5").to(self.device)
print("paraphraser loaded")
self.grammar_pipeline = pipeline(
"text2text-generation",
model="Grammarly/coedit-large",
device=0 if self.device == "cuda" else -1
)
print("grammar check loaded")
self.similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2').to(self.device)
print("sementics model loaded")
def _evaluate_with_groq(self, passage=""):
if not passage:
raise ValueError("Input passage cannot be empty.")
# Groq API setup
headers = {
"Authorization": f"Bearer {GROQ_API_KEY}", # Replace GROQ_API_KEY with your actual API key.
"Content-Type": "application/json"
}
payload = {
"model": "llama3-70b-8192",
"messages": [
{
"role": "system",
"content": "Paraphrase this sentence to better suit it as an introductory sentence to a student's Statement of purpose. Ensure that the vocabulary and grammar is upto par. ONLY return the raw paraphrased sentence and nothing else.IF IT IS a empty string, return empty string "
},
{
"role": "user",
"content": f"Here is the passage: {passage}"
}
],
"temperature": 1.0,
"max_tokens": 8192
}
# Sending request to Groq API
print("Sending request to Groq API...")
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=payload, headers=headers)
print("Response received.")
# Handling the response
if response.status_code == 200:
data = response.json()
try:
segmented_text = data.get("choices", [{}])[0].get("message", {}).get("content", "")
print("sentence paraphrase processed successfully.")
print(segmented_text)
return segmented_text
except (IndexError, KeyError) as e:
raise ValueError(f"Unexpected response structure from Groq API. Error: {str(e)}")
else:
raise ValueError(f"Groq API error: {response.status_code}, {response.text}")
def _correct_formatting(self, sentence):
cleaned_sentence = re.sub(r'([.,!?])\1+', r'\1', sentence)
cleaned_sentence = cleaned_sentence.strip()
return cleaned_sentence
def enhance_text(self, text, min_similarity=0.8, max_variations=3):
sent=0
enhanced_sentences = []
sentences = sent_tokenize(text)
total_words = sum(len(sentence.split()) for sentence in sentences)
print(f"generated: {total_words}")
for sentence in sentences:
if not sentence.strip():
continue
sent+=1
inputs = self.paraphrase_tokenizer(
f"paraphrase: {sentence}",
return_tensors="pt",
padding=True,
max_length=150,
truncation=True
).to(self.device)
outputs = self.paraphrase_model.generate(
**inputs,
max_length=len(sentence.split()) + 20,
num_return_sequences=max_variations,
num_beams=max_variations,
temperature=0.7
)
paraphrases = [
self.paraphrase_tokenizer.decode(output, skip_special_tokens=True)
for output in outputs
]
sentence_embedding = self.similarity_model.encode(sentence)
paraphrase_embeddings = self.similarity_model.encode(paraphrases)
similarities = util.cos_sim(sentence_embedding, paraphrase_embeddings)
valid_paraphrases = [
para for para, sim in zip(paraphrases, similarities[0])
if sim >= min_similarity
]
if sent in {1, len(sentences)} and valid_paraphrases:
gemini_feedback = self._evaluate_with_groq(valid_paraphrases[0])
if gemini_feedback.strip():
valid_paraphrases[0] = gemini_feedback.strip()
if valid_paraphrases:
corrected = self.grammar_pipeline(
valid_paraphrases[0],
max_length=150,
num_return_sequences=1
)[0]["generated_text"]
corrected = self._humanize_text(corrected)
corrected=self._correct_formatting(corrected)
enhanced_sentences.append(corrected)
else:
sentence=self._correct_formatting(sentence)
enhanced_sentences.append(sentence)
enhanced_text = ". ".join(sentence.rstrip(".") for sentence in enhanced_sentences) + "."
return enhanced_text
def _humanize_text(self, text):
contractions = {"can't": "cannot", "won't": "will not", "I'm": "I am", "it's": "it is"}
words = text.split()
text = " ".join([contractions.get(word, word) if random.random() > 0.9 else word for word in words])
if random.random() > 0.7:
text = text.replace(" and ", ", and ")
# Minor variations in sentence structure
if random.random() > 0.5:
text = text.replace(" is ", " happens to be ")
return text
def create_interface():
enhancer = TextEnhancer()
def process_text(text, similarity_threshold=0.75):
try:
enhanced = enhancer.enhance_text(
text,
min_similarity=similarity_threshold / 100,
max_variations=10
)
print("grammar enhanced")
return enhanced
except Exception as e:
return f"Error: {str(e)}"
interface = gr.Blocks()
with interface:
with gr.Row(elem_id="header", variant="panel"):
gr.HTML("""
<div style="display: flex; align-items: center; justify-content: center; gap: 10px; margin-bottom: 20px;">
<img src="https://raw.githubusercontent.com/juicjaane/blueai/main/logo_2.jpg" style="width: 50px; height: 50px;">
<h1 style="color: gold; font-size: 2em; margin: 0;">Konect U</h1>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Your SoP")
input_text = gr.Textbox(label="Input", placeholder="Enter SoP to Paraphrase...", lines=10)
submit_button = gr.Button("Paraphrase")
with gr.Column(scale=1):
gr.Markdown("### Paraphrased SoP")
enhanced_text = gr.Textbox(label="SoP", lines=10)
submit_button.click(process_text, inputs=[input_text], outputs=enhanced_text)
return interface
if __name__ == "__main__":
interface = create_interface()
interface.launch(share=True)
|