from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool from smolagents.tools import tooldef # Добавляем этот импорт import datetime import requests import pytz import yaml from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI @tool def generate_keywords(topic: str, num_keywords: int) -> str: """A tool that generates relevant keywords for a given topic Args: topic: The main topic or subject area to generate keywords for num_keywords: Number of keywords to generate (1-20) """ # Common keyword patterns and modifiers modifiers = [ "как", "почему", "что такое", "топ", "лучший", "обзор", "руководство", "советы", "примеры", "методы", "способы", "виды", "типы" ] suffixes = [ "для начинающих", "пошагово", "с нуля", "быстро", "эффективно", "просто", "в 2025 году", "онлайн", "на практике" ] import random # Ensure number of keywords is within reasonable range num_keywords = max(1, min(20, num_keywords)) # Generate keyword combinations keywords = set() while len(keywords) < num_keywords: keyword_type = random.randint(1, 3) if keyword_type == 1: keyword = f"{random.choice(modifiers)} {topic}" elif keyword_type == 2: keyword = f"{topic} {random.choice(suffixes)}" else: keyword = f"{random.choice(modifiers)} {topic} {random.choice(suffixes)}" keywords.add(keyword) # Format the response response = f"""Ключевые слова по теме "{topic}":\n\n""" for i, keyword in enumerate(keywords, 1): response += f"{i}. {keyword}\n" return response # Initialize components final_answer = FinalAnswerTool() # Model initialization model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='Qwen/Qwen2.5-Coder-32B-Instruct', custom_role_conversions=None, ) # Load tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) # Load prompt templates with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) # Create agent agent = CodeAgent( tools=[ image_generation_tool, generate_keywords, final_answer, DuckDuckGoSearchTool() ], model=model, max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) # Launch UI GradioUI(agent).launch()