File size: 2,709 Bytes
5ed6f3b 9b5b26a c19d193 6aae614 9b5b26a 9e8f79d 4a09234 e27cd26 9b5b26a 1ce23aa 5ed6f3b c5e9a1e 8c01ffb 9206cbc 1ce23aa 9206cbc 8c01ffb 861422e 1ce23aa 8fe992b 9206cbc 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
@tool
def generate_keywords(topic: str, num_keywords: int) -> str:
"""A tool that generates relevant keywords for a given topic
Args:
topic: The main topic or subject area to generate keywords for
num_keywords: Number of keywords to generate (1-20)
"""
# Common keyword patterns and modifiers
modifiers = [
"как", "почему", "что такое", "топ", "лучший",
"обзор", "руководство", "советы", "примеры",
"методы", "способы", "виды", "типы"
]
suffixes = [
"для начинающих", "пошагово", "с нуля",
"быстро", "эффективно", "просто",
"в 2025 году", "онлайн", "на практике"
]
import random
# Ensure number of keywords is within reasonable range
num_keywords = max(1, min(20, num_keywords))
# Generate keyword combinations
keywords = set()
while len(keywords) < num_keywords:
keyword_type = random.randint(1, 3)
if keyword_type == 1:
keyword = f"{random.choice(modifiers)} {topic}"
elif keyword_type == 2:
keyword = f"{topic} {random.choice(suffixes)}"
else:
keyword = f"{random.choice(modifiers)} {topic} {random.choice(suffixes)}"
keywords.add(keyword)
# Format the response
response = f"""Ключевые слова по теме "{topic}":\n\n"""
for i, keyword in enumerate(keywords, 1):
response += f"{i}. {keyword}\n"
return response
# Initialize components
final_answer = FinalAnswerTool()
# Model initialization
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
custom_role_conversions=None,
)
# Load tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
# Load prompt templates
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
# Create agent
agent = CodeAgent(
tools=[
image_generation_tool,
generate_keywords,
final_answer,
DuckDuckGoSearchTool()
],
model=model,
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
# Launch UI
GradioUI(agent).launch() |