File size: 3,506 Bytes
f97bf68 69855af f97bf68 b0413b4 00b74b1 bcaeb63 5709663 7e99bc1 2319f58 f97bf68 244f082 e1957fa 69855af a81c6ef ead2968 5709663 244f082 f97bf68 5709663 f97bf68 5709663 2319f58 1aa631a 5709663 1aa631a 5709663 1aa631a 7e99bc1 1aa631a 2d82305 f97bf68 244f082 5709663 244f082 f97bf68 1aa631a f97bf68 7e99bc1 78cc8b8 f97bf68 572937f f97bf68 ba5b46d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import gradio as gr
import torch
import random
from transformers import T5Tokenizer, T5ForConditionalGeneration
if torch.cuda.is_available():
device = "cuda"
print("Using GPU")
else:
device = "cpu"
print("Using CPU")
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
def generate(your_prompt, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed):
if model_precision_type == "fp16":
dtype = torch.float16
elif model_precision_type == "fp32":
dtype = torch.float32
model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", torch_dtype=dtype)
model.to(device)
input_text = f"Expand the following prompt to add more detail: {your_prompt}"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
if seed == 0:
seed = random.randint(1, 100000)
torch.manual_seed(seed)
else:
torch.manual_seed(seed)
outputs = model.generate(
input_ids,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
)
better_prompt = tokenizer.decode(outputs[0])
better_prompt = better_prompt.replace("<pad>", "").replace("</s>", "")
return better_prompt
your_prompt = gr.Textbox(label="Your Prompt", interactive=True)
max_new_tokens = gr.Slider(value=512, minimum=250, maximum=512, step=1, interactive=True, label="Max New Tokens", info="The maximum numbers of new tokens, controls how long is the output")
repetition_penalty = gr.Slider(value=1.2, minimum=0, maximum=2, step=0.05, interactive=True, label="Repetition Penalty", info="Penalize repeated tokens, making the AI repeat less itself")
temperature = gr.Slider(value=0.5, minimum=0, maximum=1, step=0.05, interactive=True, label="Temperature", info="Higher values produce more diverse outputs")
model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which is more precise but more resource consuming")
top_p = gr.Slider(value=1, minimum=0, maximum=2, step=0.05, interactive=True, label="Top P", info="Higher values sample more low-probability tokens")
top_k = gr.Slider(value=1, minimum=1, maximum=100, step=1, interactive=True, label="Top K", info="Higher k means more diverse outputs by considering a range of tokens")
seed = gr.Number(value=42, interactive=True, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")
examples = [
[
"A storefront with 'Text to Image' written on it.",
512,
1.2,
0.5,
1,
50,
42,
]
]
gr.Interface(
fn=generate,
inputs=[your_prompt, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed],
outputs=gr.Textbox(label="Better Prompt"),
title="SuperPrompt-v1",
description='Make your prompts more detailed! <br> <a href="https://huggingface.co/roborovski/superprompt-v1">Model used</a> <br> <a href="https://brianfitzgerald.xyz/prompt-augmentation/">Model Blog</a> <br> Task Prefix: "Expand the following prompt to add more detail:" is already setted! <br> Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)',
examples=examples,
).launch(show_api=False, share=True) |