File size: 3,412 Bytes
f97bf68
 
69855af
f97bf68
be9466d
f97bf68
b0413b4
 
 
 
 
 
00b74b1
4c55de4
 
 
 
be9466d
7e99bc1
4c55de4
 
 
 
7e99bc1
 
 
 
 
4c55de4
7e99bc1
2319f58
4c55de4
5709663
244f082
 
 
 
 
 
 
 
 
 
4c55de4
f97bf68
 
5709663
2319f58
1aa631a
 
5709663
1aa631a
5709663
1aa631a
 
7e99bc1
 
1aa631a
 
 
 
2d82305
f97bf68
244f082
e1bf412
244f082
f97bf68
1aa631a
f97bf68
7e99bc1
78cc8b8
f97bf68
c5a5571
f97bf68
ba5b46d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import gradio as gr
import torch
import random
from transformers import T5Tokenizer, T5ForConditionalGeneration
import spaces

if torch.cuda.is_available():
    device = "cuda"
    print("Using GPU")
else:
    device = "cpu"
    print("Using CPU")

tokenizer = T5Tokenizer.from_pretrained("roborovski/superprompt-v1")
model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1")
model.to(device)

@spaces.GPU()
def generate(your_prompt, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed):
    if seed == 0:
        seed = random.randint(1, 2**32-1)
    transformers.set_seed(seed)

    if model_precision_type == "fp16":
        dtype = torch.float16
    elif model_precision_type == "fp32":
        dtype = torch.float32

    model.to(dtype)
    
    input_text = f"Expand the following prompt to add more detail: {your_prompt}"
    input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device).to(dtype)
        
    outputs = model.generate(
        input_ids,
        max_new_tokens=max_new_tokens,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
    )

    better_prompt = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return better_prompt


your_prompt = gr.Textbox(label="Your Prompt", interactive=True)

max_new_tokens = gr.Slider(value=512, minimum=250, maximum=512, step=1, interactive=True, label="Max New Tokens", info="The maximum numbers of new tokens, controls how long is the output")
    
repetition_penalty = gr.Slider(value=1.2, minimum=0, maximum=2, step=0.05, interactive=True, label="Repetition Penalty", info="Penalize repeated tokens, making the AI repeat less itself")
    
temperature = gr.Slider(value=0.5, minimum=0, maximum=1, step=0.05, interactive=True, label="Temperature", info="Higher values produce more diverse outputs")

model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which is more precise but more resource consuming")

top_p = gr.Slider(value=1, minimum=0, maximum=2, step=0.05, interactive=True, label="Top P", info="Higher values sample more low-probability tokens")

top_k = gr.Slider(value=1, minimum=1, maximum=100, step=1, interactive=True, label="Top K", info="Higher k means more diverse outputs by considering a range of tokens")

seed = gr.Number(value=42, interactive=True, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")

examples = [
    ["A storefront with 'Text to Image' written on it.", 512, 1.2, 0.5, "fp16", 1, 50, 42]
]

gr.Interface(
    fn=generate,
    inputs=[your_prompt, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed],
    outputs=gr.Textbox(label="Better Prompt"),
    title="SuperPrompt-v1",
    description='Make your prompts more detailed! <br> <a href="https://github.com/Nick088Official/SuperPrompt-v1">Github Repository & Model used</a> <br> <a href="https://brianfitzgerald.xyz/prompt-augmentation/">Model Blog</a> <br> Task Prefix: "Expand the following prompt to add more detail:" is already setted! <br> Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)',
    examples=examples,
).launch(show_api=False, share=True)