import streamlit as st import os from PyPDF2 import PdfReader import docx from langchain.chat_models import ChatOpenAI from dotenv import load_dotenv from langchain.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from streamlit_chat import message from langchain.callbacks import get_openai_callback def main(): load_dotenv() st.set_page_config(page_title="DocumentGPT", page_icon=":books:") st.header(":books: CHAT WITH YOUR DOCUMENTS") if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None if "processComplete" not in st.session_state: st.session_state.processComplete = None with st.sidebar: uploaded_files = st.file_uploader("**:books: Upload your files**",accept_multiple_files=True) openai_api_key = st.text_input("**:key: OpenAI API Key**" , type="password") process = st.button("**Process**") if process: if not openai_api_key: st.info("Please add your OpenAI API key to continue.") st.stop() with st.spinner("Processing"): files_text = get_files_text(uploaded_files) # get text chunks text_chunks = get_text_chunks(files_text) # create vetore stores vetorestore = get_vectorstore(text_chunks) st.sidebar.info('Processing Complete', icon="✅") # create conversation chain st.session_state.conversation = get_conversation_chain(vetorestore,openai_api_key) #for openAI st.session_state.processComplete = True if st.session_state.processComplete == True: user_question = st.chat_input("Ask Question about your files.") if user_question: handel_userinput(user_question) # Function to get the input file and read the text from it. def get_files_text(uploaded_files): text = "" for uploaded_file in uploaded_files: split_tup = os.path.splitext(uploaded_file.name) file_extension = split_tup[1] if file_extension == ".pdf": text += get_pdf_text(uploaded_file) elif file_extension == ".docx": text += get_docx_text(uploaded_file) else: text += get_csv_text(uploaded_file) return text # Function to read PDF Files def get_pdf_text(pdf): pdf_reader = PdfReader(pdf) text = "" for page in pdf_reader.pages: text += page.extract_text() return text def get_docx_text(file): doc = docx.Document(file) allText = [] for docpara in doc.paragraphs: allText.append(docpara.text) text = ' '.join(allText) return text def get_csv_text(file): return "a" def get_text_chunks(text): # spilit ito chuncks text_splitter = CharacterTextSplitter( separator="\n", chunk_size=900, chunk_overlap=100, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): # Using the hugging face embedding models embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") # creating the Vectore Store using Facebook AI Semantic search knowledge_base = FAISS.from_texts(text_chunks,embeddings) return knowledge_base def get_conversation_chain(vetorestore,openai_api_key): llm = ChatOpenAI(openai_api_key=openai_api_key, model_name = 'gpt-3.5-turbo',temperature=0) memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, skip_on_failure=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vetorestore.as_retriever(), memory=memory ) return conversation_chain def handel_userinput(user_question): with get_openai_callback() as cb: response = st.session_state.conversation({'question':user_question}) st.session_state.chat_history = response['chat_history'] # Layout of input/response containers response_container = st.container() with response_container: for i, messages in enumerate(st.session_state.chat_history): if i % 2 == 0: message(messages.content, is_user=True, key=str(i)) else: message(messages.content, key=str(i)) if __name__ == '__main__': main()