Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -59,35 +59,63 @@ tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
|
| 59 |
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
| 60 |
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
|
| 82 |
-
|
| 83 |
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
|
| 89 |
|
| 90 |
-
|
| 91 |
|
| 92 |
|
| 93 |
|
|
@@ -117,8 +145,14 @@ def Visual_re_ranker(caption_man, caption_woman, context_label, context_prob):
|
|
| 117 |
sim_w = get_sim(sim_w)
|
| 118 |
|
| 119 |
|
| 120 |
-
LM_man =
|
| 121 |
-
LM_woman =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
#LM = scorer.sentence_score(caption, reduce="mean")
|
| 123 |
score_man = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(context_prob)))
|
| 124 |
score_woman = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(context_prob)))
|
|
|
|
| 59 |
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
| 60 |
|
| 61 |
|
| 62 |
+
|
| 63 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
| 64 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
| 65 |
+
|
| 66 |
+
def sentence_prob_mean(text):
|
| 67 |
+
# Tokenize the input text and add special tokens
|
| 68 |
+
input_ids = tokenizer.encode(text, return_tensors='pt')
|
| 69 |
+
|
| 70 |
+
# Obtain model outputs
|
| 71 |
+
with torch.no_grad():
|
| 72 |
+
outputs = model(input_ids, labels=input_ids)
|
| 73 |
+
logits = outputs.logits # logits are the model outputs before applying softmax
|
| 74 |
+
|
| 75 |
+
# Shift logits and labels so that tokens are aligned:
|
| 76 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 77 |
+
shift_labels = input_ids[..., 1:].contiguous()
|
| 78 |
+
|
| 79 |
+
# Calculate the softmax probabilities
|
| 80 |
+
probs = softmax(shift_logits, dim=-1)
|
| 81 |
+
|
| 82 |
+
# Gather the probabilities of the actual token IDs
|
| 83 |
+
gathered_probs = torch.gather(probs, 2, shift_labels.unsqueeze(-1)).squeeze(-1)
|
| 84 |
+
|
| 85 |
+
# Compute the mean probability across the tokens
|
| 86 |
+
mean_prob = torch.mean(gathered_probs).item()
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
# def cloze_prob(text):
|
| 91 |
+
|
| 92 |
+
# whole_text_encoding = tokenizer.encode(text)
|
| 93 |
+
# text_list = text.split()
|
| 94 |
+
# stem = ' '.join(text_list[:-1])
|
| 95 |
+
# stem_encoding = tokenizer.encode(stem)
|
| 96 |
+
# cw_encoding = whole_text_encoding[len(stem_encoding):]
|
| 97 |
+
# tokens_tensor = torch.tensor([whole_text_encoding])
|
| 98 |
|
| 99 |
+
# with torch.no_grad():
|
| 100 |
+
# outputs = model(tokens_tensor)
|
| 101 |
+
# predictions = outputs[0]
|
| 102 |
+
|
| 103 |
+
# logprobs = []
|
| 104 |
+
# start = -1-len(cw_encoding)
|
| 105 |
+
# for j in range(start,-1,1):
|
| 106 |
+
# raw_output = []
|
| 107 |
+
# for i in predictions[-1][j]:
|
| 108 |
+
# raw_output.append(i.item())
|
| 109 |
|
| 110 |
+
# logprobs.append(np.log(softmax(raw_output)))
|
| 111 |
|
| 112 |
|
| 113 |
+
# conditional_probs = []
|
| 114 |
+
# for cw,prob in zip(cw_encoding,logprobs):
|
| 115 |
+
# conditional_probs.append(prob[cw])
|
| 116 |
|
| 117 |
|
| 118 |
+
# return np.exp(np.sum(conditional_probs))
|
| 119 |
|
| 120 |
|
| 121 |
|
|
|
|
| 145 |
sim_w = get_sim(sim_w)
|
| 146 |
|
| 147 |
|
| 148 |
+
LM_man = sentence_prob_mean(caption_man)
|
| 149 |
+
LM_woman = sentence_prob_mean(caption_woman)
|
| 150 |
+
|
| 151 |
+
# LM_man = cloze_prob(caption_man)
|
| 152 |
+
# LM_woman = cloze_prob(caption_woman)
|
| 153 |
+
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
#LM = scorer.sentence_score(caption, reduce="mean")
|
| 157 |
score_man = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(context_prob)))
|
| 158 |
score_woman = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(context_prob)))
|