#!/usr/bin/env python3 from doctest import OutputChecker import sys import torch import re import os import gradio as gr import requests import torch #from transformers import GPT2Tokenizer, GPT2LMHeadModel from torch.nn.functional import softmax import numpy as np from transformers import AutoTokenizer, AutoModelForCausalLM #from torch.nn.functional import softmax from huggingface_hub import login # just for the sake of this demo, we use cloze prob to initialize the hypothesis #url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models" #resp = requests.get(url) from sentence_transformers import SentenceTransformer, util model_sts = SentenceTransformer('stsb-distilbert-base') #model_sts = SentenceTransformer('roberta-large-nli-stsb-mean-tokens') #batch_size = 1 #scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size) #import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel import numpy as np import re def get_sim(x): x = str(x)[1:-1] x = str(x)[1:-1] return x # Load pre-trained model #model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True) #model = GPT2LMHeadModel.from_pretrained('gpt2', output_hidden_states = True, output_attentions = True) #model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True) #model.eval() #tokenizer = gr.Interface.load('huggingface/distilgpt2') #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') import os #print(os.getenv('HF_token')) hf_api_token = os.getenv("HF_token") # For sensitive secrets #app_mode = os.getenv("APP_MODE") # For public variables access_token = hf_api_token print(login(token = access_token)) tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B") model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B") #tokenizer = GPT2Tokenizer.from_pretrained('gpt2') #model = GPT2LMHeadModel.from_pretrained('gpt2') def sentence_prob_mean(text): # Tokenize the input text and add special tokens input_ids = tokenizer.encode(text, return_tensors='pt') with torch.no_grad(): outputs = model(input_ids, labels=input_ids) logits = outputs.logits # logits are the model outputs before applying softmax shift_logits = logits[..., :-1, :].contiguous() shift_labels = input_ids[..., 1:].contiguous() probs = softmax(shift_logits, dim=-1) gathered_probs = torch.gather(probs, 2, shift_labels.unsqueeze(-1)).squeeze(-1) mean_prob = torch.mean(gathered_probs).item() return mean_prob def cos_sim(a, b): return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b))) def Visual_re_ranker(caption_man, caption_woman, visual_context_label, context_prob): caption_man = caption_man caption_woman = caption_woman visual_context_label = visual_context_label context_prob = context_prob caption_emb_man = model_sts.encode(caption_man, convert_to_tensor=True) caption_emb_woman = model_sts.encode(caption_woman, convert_to_tensor=True) context_label_emb = model_sts.encode(visual_context_label, convert_to_tensor=True) sim_m = cosine_scores = util.pytorch_cos_sim(caption_emb_man, context_label_emb) sim_m = sim_m.cpu().numpy() sim_m = get_sim(sim_m) sim_w = cosine_scores = util.pytorch_cos_sim(caption_emb_woman, context_label_emb) sim_w = sim_w.cpu().numpy() sim_w = get_sim(sim_w) LM_man = sentence_prob_mean(caption_man) LM_woman = sentence_prob_mean(caption_woman) #LM = scorer.sentence_score(caption, reduce="mean") score_man = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(context_prob))) score_woman = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(context_prob))) #return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 } return {"Man": float(score_man)/1, "Woman": float(score_woman)/1} #return LM, sim, score demo = gr.Interface( fn=Visual_re_ranker, description="Demo for Women Wearing Lipstick: Measuring the Bias Between Object and Its Related Gender (distilbert)", inputs=[gr.Textbox(value="a man riding a motorcycle on a road") , gr.Textbox(value="a woman riding a motorcycle on a road"), gr.Textbox(value="motor scooter"), gr.Textbox(value="0.2183")], outputs="label", ) demo.launch()