Update app.py
Browse files
app.py
CHANGED
|
@@ -48,20 +48,22 @@ def get_sim(x):
|
|
| 48 |
# Load pre-trained model
|
| 49 |
|
| 50 |
#model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True)
|
| 51 |
-
model = GPT2LMHeadModel.from_pretrained('gpt2', output_hidden_states = True, output_attentions = True)
|
| 52 |
#model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True)
|
| 53 |
|
| 54 |
#model.eval()
|
| 55 |
#tokenizer = gr.Interface.load('huggingface/distilgpt2')
|
| 56 |
|
| 57 |
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
| 58 |
-
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
| 59 |
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
|
|
|
|
|
|
|
|
|
| 60 |
|
|
|
|
|
|
|
| 61 |
|
| 62 |
|
| 63 |
-
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
| 64 |
-
model = GPT2LMHeadModel.from_pretrained('distilgpt2')
|
| 65 |
|
| 66 |
def sentence_prob_mean(text):
|
| 67 |
# Tokenize the input text and add special tokens
|
|
@@ -85,37 +87,38 @@ def sentence_prob_mean(text):
|
|
| 85 |
# Compute the mean probability across the tokens
|
| 86 |
mean_prob = torch.mean(gathered_probs).item()
|
| 87 |
|
|
|
|
| 88 |
|
| 89 |
|
| 90 |
-
def cloze_prob(text):
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
|
| 110 |
-
|
| 111 |
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
|
| 117 |
|
| 118 |
-
|
| 119 |
|
| 120 |
|
| 121 |
|
|
|
|
| 48 |
# Load pre-trained model
|
| 49 |
|
| 50 |
#model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True)
|
| 51 |
+
#model = GPT2LMHeadModel.from_pretrained('gpt2', output_hidden_states = True, output_attentions = True)
|
| 52 |
#model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True)
|
| 53 |
|
| 54 |
#model.eval()
|
| 55 |
#tokenizer = gr.Interface.load('huggingface/distilgpt2')
|
| 56 |
|
| 57 |
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
|
|
|
| 58 |
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
| 59 |
+
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
| 60 |
+
|
| 61 |
+
|
| 62 |
|
| 63 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
| 64 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
| 65 |
|
| 66 |
|
|
|
|
|
|
|
| 67 |
|
| 68 |
def sentence_prob_mean(text):
|
| 69 |
# Tokenize the input text and add special tokens
|
|
|
|
| 87 |
# Compute the mean probability across the tokens
|
| 88 |
mean_prob = torch.mean(gathered_probs).item()
|
| 89 |
|
| 90 |
+
return mean_prob
|
| 91 |
|
| 92 |
|
| 93 |
+
# def cloze_prob(text):
|
| 94 |
|
| 95 |
+
# whole_text_encoding = tokenizer.encode(text)
|
| 96 |
+
# text_list = text.split()
|
| 97 |
+
# stem = ' '.join(text_list[:-1])
|
| 98 |
+
# stem_encoding = tokenizer.encode(stem)
|
| 99 |
+
# cw_encoding = whole_text_encoding[len(stem_encoding):]
|
| 100 |
+
# tokens_tensor = torch.tensor([whole_text_encoding])
|
| 101 |
|
| 102 |
+
# with torch.no_grad():
|
| 103 |
+
# outputs = model(tokens_tensor)
|
| 104 |
+
# predictions = outputs[0]
|
| 105 |
+
|
| 106 |
+
# logprobs = []
|
| 107 |
+
# start = -1-len(cw_encoding)
|
| 108 |
+
# for j in range(start,-1,1):
|
| 109 |
+
# raw_output = []
|
| 110 |
+
# for i in predictions[-1][j]:
|
| 111 |
+
# raw_output.append(i.item())
|
| 112 |
|
| 113 |
+
# logprobs.append(np.log(softmax(raw_output)))
|
| 114 |
|
| 115 |
|
| 116 |
+
# conditional_probs = []
|
| 117 |
+
# for cw,prob in zip(cw_encoding,logprobs):
|
| 118 |
+
# conditional_probs.append(prob[cw])
|
| 119 |
|
| 120 |
|
| 121 |
+
# return np.exp(np.sum(conditional_probs))
|
| 122 |
|
| 123 |
|
| 124 |
|