Update app.py
Browse files
app.py
CHANGED
@@ -50,9 +50,12 @@ def get_sim(x):
|
|
50 |
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
51 |
|
52 |
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
|
|
56 |
|
57 |
|
58 |
|
@@ -60,22 +63,19 @@ def sentence_prob_mean(text):
|
|
60 |
# Tokenize the input text and add special tokens
|
61 |
input_ids = tokenizer.encode(text, return_tensors='pt')
|
62 |
|
63 |
-
# Obtain model outputs
|
64 |
with torch.no_grad():
|
65 |
outputs = model(input_ids, labels=input_ids)
|
66 |
logits = outputs.logits # logits are the model outputs before applying softmax
|
67 |
|
68 |
-
|
69 |
shift_logits = logits[..., :-1, :].contiguous()
|
70 |
shift_labels = input_ids[..., 1:].contiguous()
|
71 |
|
72 |
-
|
73 |
probs = softmax(shift_logits, dim=-1)
|
74 |
|
75 |
-
# Gather the probabilities of the actual token IDs
|
76 |
gathered_probs = torch.gather(probs, 2, shift_labels.unsqueeze(-1)).squeeze(-1)
|
77 |
|
78 |
-
# Compute the mean probability across the tokens
|
79 |
mean_prob = torch.mean(gathered_probs).item()
|
80 |
|
81 |
return mean_prob
|
|
|
50 |
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
51 |
|
52 |
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
|
54 |
+
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B")
|
55 |
|
56 |
+
|
57 |
+
#tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
58 |
+
#model = GPT2LMHeadModel.from_pretrained('gpt2')
|
59 |
|
60 |
|
61 |
|
|
|
63 |
# Tokenize the input text and add special tokens
|
64 |
input_ids = tokenizer.encode(text, return_tensors='pt')
|
65 |
|
|
|
66 |
with torch.no_grad():
|
67 |
outputs = model(input_ids, labels=input_ids)
|
68 |
logits = outputs.logits # logits are the model outputs before applying softmax
|
69 |
|
70 |
+
|
71 |
shift_logits = logits[..., :-1, :].contiguous()
|
72 |
shift_labels = input_ids[..., 1:].contiguous()
|
73 |
|
74 |
+
|
75 |
probs = softmax(shift_logits, dim=-1)
|
76 |
|
|
|
77 |
gathered_probs = torch.gather(probs, 2, shift_labels.unsqueeze(-1)).squeeze(-1)
|
78 |
|
|
|
79 |
mean_prob = torch.mean(gathered_probs).item()
|
80 |
|
81 |
return mean_prob
|