File size: 6,372 Bytes
f38b41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ea9bf1
 
f38b41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18cd94a
 
f38b41e
 
 
 
 
18cd94a
 
f38b41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ea9bf1
f38b41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aa8ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f38b41e
 
0aa8ed6
 
f38b41e
 
0aa8ed6
f38b41e
0aa8ed6
f38b41e
 
 
0aa8ed6
f38b41e
 
 
 
 
 
 
0aa8ed6
 
f38b41e
 
 
 
 
 
 
 
 
 
0aa8ed6
f38b41e
 
 
0b41e50
9618ec7
7c078dc
9618ec7
f38b41e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#!/usr/bin/env python3
from doctest import OutputChecker
import sys
import torch
import re
import os
import gradio as gr
import requests

#url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models"
#resp = requests.get(url)

from sentence_transformers import SentenceTransformer, util
#from sentence_transformers import SentenceTransformer, util
#from sklearn.metrics.pairwise import cosine_similarity
#from lm_scorer.models.auto import AutoLMScorer as LMScorer
#from sentence_transformers import SentenceTransformer, util
#from sklearn.metrics.pairwise import cosine_similarity


#model_sts = gr.Interface.load('huggingface/sentence-transformers/stsb-distilbert-base') 

model_sts = SentenceTransformer('stsb-distilbert-base')
#model_sts = SentenceTransformer('roberta-large-nli-stsb-mean-tokens')
#batch_size = 1
#scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size)

#import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import numpy as np
import re




def Sort_Tuple(tup):  
  
	# (Sorts in descending order)  
	tup.sort(key = lambda x: x[1])  
	return tup[::-1]


def softmax(x):
	exps = np.exp(x)
	return np.divide(exps, np.sum(exps))


def get_sim(x):
    x =  str(x)[1:-1]
    x =  str(x)[1:-1]
    return x
 
	
# Load pre-trained model 

#model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True)
model = GPT2LMHeadModel.from_pretrained('gpt2', output_hidden_states = True, output_attentions = True)
#model  =  gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True)

#model.eval()
#tokenizer =  gr.Interface.load('huggingface/distilgpt2')

#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')


def cloze_prob(text):

	whole_text_encoding = tokenizer.encode(text)
	# Parse out the stem of the whole sentence (i.e., the part leading up to but not including the critical word)
	text_list = text.split()
	stem = ' '.join(text_list[:-1])
	stem_encoding = tokenizer.encode(stem)
	cw_encoding = whole_text_encoding[len(stem_encoding):]
	tokens_tensor = torch.tensor([whole_text_encoding])
	
	with torch.no_grad():
		outputs = model(tokens_tensor)
		predictions = outputs[0]   

	logprobs = []
	# start at the stem and get downstream probabilities incrementally from the model(see above)
	start = -1-len(cw_encoding)
	for j in range(start,-1,1):
			raw_output = []
			for i in predictions[-1][j]:
					raw_output.append(i.item())
	
			logprobs.append(np.log(softmax(raw_output)))
			
	
	conditional_probs = []
	for cw,prob in zip(cw_encoding,logprobs):
			conditional_probs.append(prob[cw])
	# now that you have all the relevant probabilities, return their product.
	# This is the probability of the critical word given the context before it.

	return np.exp(np.sum(conditional_probs))





def cos_sim(a, b):
    return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b)))


  
#def Visual_re_ranker(caption, visual_context_label, visual_context_prob):
#def Visual_re_ranker(caption_man, caption_woman, visual_context_label, visual_context_prob):
#    caption_man = caption_man  
#    caption_woman = caption_woman
#    visual_context_label= visual_context_label
#    visual_context_prob = visual_context_prob
#    caption_emb_man = model_sts.encode(caption_man, convert_to_tensor=True)
#    caption_emb_woman = model_sts.encode(caption_woman, convert_to_tensor=True)
#    visual_context_label_emb = model_sts.encode(visual_context_label, convert_to_tensor=True)

#    sim_m =  cosine_scores = util.pytorch_cos_sim(caption_emb_man, visual_context_label_emb)
#    sim_m = sim_m.cpu().numpy()
#    sim_m = get_sim(sim_m)

#    sim_w = cosine_scores = util.pytorch_cos_sim(caption_emb_woman, visual_context_label_emb) 
#    sim_w = sim_w.cpu().numpy()
#    sim_w = get_sim(sim_w)


#    LM_man = cloze_prob(caption_man)
#    LM_woman = cloze_prob(caption_woman)
    #LM  = scorer.sentence_score(caption, reduce="mean")
#    score_man     = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(visual_context_prob)))
#    score_woman   = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(visual_context_prob)))




    #return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 }
#    return {"Man": float(score_man)/1, "Woman": float(score_woman)/1}
    #return LM, sim, score 

def Visual_re_ranker(caption_man, caption_woman, context_label, context_prob):
    caption_man = caption_man  
    caption_woman = caption_woman
    context_label= context_label
    context_prob = context_prob
    caption_emb_man = model_sts.encode(caption_man, convert_to_tensor=True)
    caption_emb_woman = model_sts.encode(caption_woman, convert_to_tensor=True)
    context_label_emb = model_sts.encode(context_label, convert_to_tensor=True)

    sim_m =  cosine_scores = util.pytorch_cos_sim(caption_emb_man, context_label_emb)
    sim_m = sim_m.cpu().numpy()
    sim_m = get_sim(sim_m)

    sim_w = cosine_scores = util.pytorch_cos_sim(caption_emb_woman, context_label_emb) 
    sim_w = sim_w.cpu().numpy()
    sim_w = get_sim(sim_w)


    LM_man = cloze_prob(caption_man)
    LM_woman = cloze_prob(caption_woman)
    #LM  = scorer.sentence_score(caption, reduce="mean")
    score_man     = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(context_prob)))
    score_woman   = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(context_prob)))


    #return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 }
    return {"Man": float(score_man)/1, "Woman": float(score_woman)/1}
    #return LM, sim, score 






demo = gr.Interface(
    fn=Visual_re_ranker,
    description="Demo for Women Wearing Lipstick: Measuring the Bias Between Object and Its Related Gender",
    inputs=[gr.Textbox(value="a man riding a motorcycle on a road") , gr.Textbox(value="a woman riding a motorcycle on a road"), gr.Textbox(value="motor scooter"),  gr.Textbox(value="0.2183")],
    
     #inputs=[gr.Textbox(value="a man is blow drying his hair in the bathroom") , gr.Textbox(value="a woman is blow drying her hair in the bathroom"), gr.Textbox(value="hair spray"),  gr.Textbox(value="0.7385")],
    
    outputs="label",
)
demo.launch()