Spaces:
Runtime error
Runtime error
File size: 4,456 Bytes
f4a091c df0f591 f4a091c 2826193 f4a091c fc0cdf2 f4a091c fc0cdf2 340532d f4a091c fc0cdf2 f4a091c fc0cdf2 f4a091c fc0cdf2 f4a091c fc0cdf2 f4a091c fc0cdf2 f4a091c fc0cdf2 f4a091c fc0cdf2 f4a091c 21a3057 f4a091c fc0cdf2 21a3057 5500e55 2ededac 5500e55 2ededac 5500e55 6e76a6f f4a091c 21a3057 2d06113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
# -*- coding: utf-8 -*-
"""Copy of Copy of Chatbot with custom knowledge base
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1VSXUmag_76fzebs16YhW_as4mdhHNdkx
"""
#pip install llama-index
#pip install langchain
#pip install gradio
#pip install pandas
#pip install openpyxl
import pandas as pd
from llama_index import SimpleDirectoryReader, GPTListIndex, readers, GPTSimpleVectorIndex, LLMPredictor, PromptHelper
from langchain import OpenAI
import sys
import os
from IPython.display import Markdown, display
import pandas as pd
from llama_index import SimpleDirectoryReader, GPTListIndex, readers, GPTSimpleVectorIndex, LLMPredictor, PromptHelper
from langchain import OpenAI
from IPython.display import Markdown, display
#import streamlit as st
import gradio as gr
#import gradio
df = pd.read_excel('Shegardi_dataset.xlsx',sheet_name = 'dataset')
#os.environ['OPENAI_API_KEY'] = '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'
os.environ['OPENAI_API_KEY'] = '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'
def construct_index(directory_path):
# set maximum input size
max_input_size = 4096
# set number of output tokens
num_outputs = 2000
# set maximum chunk overlap
max_chunk_overlap = 20
# set chunk size limit
chunk_size_limit = 600
# define LLM
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.5, model_name="text-davinci-003", max_tokens=num_outputs))
prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)
documents = SimpleDirectoryReader(directory_path).load_data()
index = GPTSimpleVectorIndex(
documents, llm_predictor=llm_predictor, prompt_helper=prompt_helper
)
index.save_to_disk('index.json')
return index
#construct_index("context_data/data")
#import streamlit as st
# Include other necessary imports here
# Add the cashback calculator
def cashback_calculator(segment, total_spent, international_transactions, local_transactions):
cashback = 0
if find_similar(segment, ['almassy', 'alsafwa_plus', 'safwa', 'w', 'W']):
if total_spent < 3000:
cashback = total_spent * 0.03
else:
cashback = international_transactions * 0.06 + local_transactions * 0.03
if find_similar(segment, ['almassy', 'alsafwa_plus', 'safwa']):
max_cashback = 500
else: # segment == 'w'
max_cashback = 300
cashback = min(cashback, max_cashback)
elif similar(segment, 'normal'):
cashback = total_spent * 0.01
cashback = min(cashback, 150)
return cashback
# Helper functions
def similar(a, b, threshold=0.5):
return SequenceMatcher(None, a, b).ratio() > threshold
def find_similar(segment, segments):
return any(similar(segment, s) for s in segments)
def is_query_about_cashback(query):
cashback_keywords = ["cashback", "calculate", "calculation", "reward", "points"]
return any(word.lower() in query.lower() for word in cashback_keywords)
# Main language model function
def ask_ai(query):
if is_query_about_cashback(query):
# Extract the required information from the query or ask the user for more information if needed
segment = input("Enter your card segment: ")
total_spent = float(input("Enter your total spent amount: "))
international_transactions = float(input("Enter your international transactions amount: "))
local_transactions = float(input("Enter your local transactions amount: "))
cashback = cashback_calculator(segment, total_spent, international_transactions, local_transactions)
return f"The cashback amount for your card is: {cashback:.2f}"
else:
index = GPTSimpleVectorIndex.load_from_disk('index.json')
response = index.query(query, response_mode="compact")
return response.response
# Gradio interface
import gradio as gr
iface = gr.Interface(fn=ask_ai, inputs="text", outputs="text", title="The following is a conversation with a human called Shegardi. Shegardi is helpful, precise, truthful, and very friendly. Also, Shegardi is an employee of Warba Bank, located in Kuwait. Shegardi will only use the information provided to him.",
description="Enter a question and get an answer from Shegardi.")
iface.launch()
|