## OmniLMM-12B > OmniLMM-12B is released at early time of this project. We recommond you to use our [recently released models](./README_en.md), for better performance and efficiency. > Archieve at: 2024-05-19 **OmniLMM-12B** is the most capable version. The model is built based on EVA02-5B and Zephyr-7B-β, connected with a perceiver resampler layer, and trained on multimodal data in a curriculum fashion. The model has three notable features: - 🔥 **Strong Performance.** OmniLMM-12B achieves **leading performance** among models with comparable sizes, surpassing established LMMs on multiple benchmarks (including MME, MMBench, SEED-Bench, etc). The model also endows rich multi-modal world knowledge. - 🏆 **Trustworthy Behavior.** LMMs are known for suffering from hallucination, often generating text that is not factually grounded in images (e.g., faithfully describing non-existing objects in images). OmniLMM-12B is **the first state-of-the-art open-source LMM aligned via multimodal RLHF for trustworthy behavior** (using the recent [RLHF-V](https://rlhf-v.github.io/) technique). It **ranks #1** among open-source models on [MMHal-Bench](https://huggingface.co/datasets/Shengcao1006/MMHal-Bench), and **outperforms GPT-4V** on [Object HalBench](https://arxiv.org/abs/2312.00849). - 🕹 **Real-time Multimodal Interaction.** We combine the OmniLMM-12B and GPT-3.5 (text-only) into a **real-time multimodal interactive assistant**. The assistant accepts video streams from the camera and speech streams from the microphone and emits speech output. While still primary, we find the model can **replicate some of the fun cases shown in the Gemini Demo video, without any video edition**. ### Evaluation <!-- omit in toc --> <div align="center"> <img src=assets/radar_omnilmm12b.png width=66% /> </div> <details> <summary>Click to view results on MME, MMBench, MMMU, MMBench, MMHal-Bench, Object HalBench, SeedBench, LLaVA Bench, MathVista. </summary> <table> <thead> <tr> <th align="left">Model</th> <th>Size</th> <th>MME</th> <th nowrap="nowrap">MMB dev (en)</th> <th nowrap="nowrap" >MMMU val</th> <th nowrap="nowrap" >MMHal-Bench</th> <th nowrap="nowrap" >Object HalBench</th> <th nowrap="nowrap" >SeedBench-I</th> <th>MathVista</th> <th nowrap="nowrap" >LLaVA Bench</th> </tr> </thead> <tbody align="center"> <tr> <td align="left">GPT-4V†</td> <td>-</td> <td>1771.5</td> <td>75.1 </td> <td>56.8</td> <td>3.53 / 70.8</td> <td>86.4 / 92.7</td> <td>71.6 </td> <td>47.8 </td> <td>93.1 </td> </tr> <tr> <td nowrap="nowrap" align="left">Qwen-VL-Plus†</td> <td>-</td> <td>2183.4</td> <td>66.2 </td> <td>45.2</td> <td>- </td> <td>- </td> <td>65.7 </td> <td>36.0 </td> <td>73.7 </td> </tr> <tr> <td align="left">Yi-VL 6B</td> <td align="right">6.7B </td> <td>1915.1 </td> <td>68.6 </td> <td>40.3 </td> <td>- </td> <td>- </td> <td>67.5 </td> <td>28.8 </td> <td>51.9 </td> </tr> <tr> <td nowrap="nowrap" align="left" >Qwen-VL-Chat</td> <td align="right">9.6B</td> <td>1860.0</td> <td>60.6 </td> <td>35.9</td> <td>2.93 / 59.4</td> <td>56.2 / 80.0</td> <td>64.8 </td> <td>33.8 </td> <td>67.7 </td> </tr> <tr> <td align="left" >CogVLM-Chat</td> <td align="right">17.4B</td> <td>1736.6</td> <td>63.7 </td> <td>32.1 </td> <td>2.68 / 52.1 </td> <td>73.6 / 87.4 </td> <td>68.8 </td> <td>34.7 </td> <td>73.9 </td> </tr> <tr> <td align="left" >LLaVA 1.5</td> <td align="right">13.6B </td> <td>1808.4 </td> <td>68.2 </td> <td>36.4 </td> <td>2.71 / 51.0 </td> <td>53.7 / 77.4 </td> <td>68.1 </td> <td>26.4 </td> <td>64.6 </td> </tr> <tr> <td nowrap="nowrap" align="left" ><b>OmniLMM-12B</b></td> <td align="right">11.6B </td> <td>1935.8 </td> <td>71.6 </td> <td>40.7 </td> <td>3.45 / 68.8 </td> <td>90.3 / 95.5 </td> <td>71.1 </td> <td>34.9 </td> <td>72.0 </td> </tr> </tbody> </table> <small>†: Proprietary models</small> <br> </details> ### Examples <!-- omit in toc --> <table align="center" > <p align="center" > <img src="assets/omnilmm-12b-examples_2.png" /> </p> </table> We combine the OmniLMM-12B and GPT-3.5 (text-only) into a **real-time multimodal interactive assistant**. Video frames are described in text using OmniLMM-12B, and ChatGPT 3.5 (text-only) is employed to generate response according to the descriptions and user prompts. The demo video is a raw recording without edition. <div align="center" > <video controls src="https://github.com/OpenBMB/OmniLMM/assets/157115220/485a8f52-fb4d-4eca-8fee-506347efcfc6" type="video/mp4" width=80%/> </div> ### Model Zoo | Model | Description | Download Link | |:----------------------|:-------------------|:---------------:| | OmniLMM-12B | The most capable version with leading performance. | [🤗](https://huggingface.co/openbmb/OmniLMM-12B) [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/OmniLMM-12B/files) |