Spaces:
Configuration error
Configuration error
| import copy | |
| import json | |
| import logging | |
| import math | |
| import os | |
| from dataclasses import dataclass, field | |
| from typing import Dict, List, Optional | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from torch.nn.utils.rnn import pad_sequence | |
| from torch.utils.data import Dataset | |
| from transformers import AutoProcessor, AutoTokenizer | |
| class SupervisedDataset(Dataset): | |
| """Dataset for supervised fine-tuning.""" | |
| def __init__( | |
| self, | |
| raw_data, | |
| transform, | |
| tokenizer, | |
| slice_config, | |
| llm_type="minicpm", | |
| patch_size=14, | |
| query_nums=64, | |
| batch_vision=False, | |
| ): | |
| super(SupervisedDataset, self).__init__() | |
| self.raw_data = raw_data | |
| self.tokenizer = tokenizer | |
| self.transform = transform | |
| self.slice_config = slice_config | |
| self.llm_type = llm_type | |
| self.patch_size = patch_size | |
| self.query_nums=query_nums | |
| self.batch_vision = batch_vision | |
| def __len__(self): | |
| return len(self.raw_data) | |
| def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
| image = Image.open(self.raw_data[i]["image"]).convert("RGB") | |
| ret = preprocess( | |
| image, | |
| self.raw_data[i]["conversations"], | |
| self.tokenizer, | |
| self.transform, | |
| query_nums=self.query_nums, | |
| slice_config=self.slice_config, | |
| llm_type=self.llm_type, | |
| patch_size=self.patch_size, | |
| batch_vision=self.batch_vision, | |
| ) | |
| ret = dict( | |
| input_ids=ret["input_ids"], | |
| position_ids=ret["position_ids"], | |
| labels=ret["target"], | |
| attention_mask=torch.ones_like(ret["input_ids"], dtype=torch.bool), | |
| pixel_values=ret["pixel_values"], | |
| tgt_sizes=ret["tgt_sizes"], | |
| image_bound=ret["image_bound"], | |
| ) | |
| return ret | |
| def data_collator(examples, padding_value=0, max_length=2048): | |
| def trim_and_pad(seq, batch_first, padding_value): | |
| return pad_sequence([s[:max_length] for s in seq], batch_first=True, padding_value=padding_value) | |
| input_ids = trim_and_pad( | |
| [example["input_ids"] for example in examples], | |
| batch_first=True, | |
| padding_value=padding_value, | |
| ) | |
| position_ids = trim_and_pad( | |
| [example["position_ids"] for example in examples], | |
| batch_first=True, | |
| padding_value=padding_value, | |
| ) | |
| targets = trim_and_pad( | |
| [example["labels"] for example in examples], | |
| batch_first=True, | |
| padding_value=-100, | |
| ) | |
| attention_mask = trim_and_pad( | |
| [example["attention_mask"] for example in examples], | |
| batch_first=True, | |
| padding_value=padding_value, | |
| ) | |
| pixel_values = [example["pixel_values"] for example in examples] | |
| image_bound = [example["image_bound"] for example in examples] | |
| tgt_sizes = [example["tgt_sizes"] for example in examples] | |
| return { | |
| "input_ids": input_ids, | |
| "position_ids": position_ids, | |
| "labels": targets, | |
| "attention_mask": attention_mask, | |
| "image_bound": image_bound, | |
| "tgt_sizes": tgt_sizes, | |
| "pixel_values": pixel_values, | |
| } | |
| def conversation_to_ids(conversation, tokenizer, llm_type=None): | |
| """ | |
| for single image multi-turn conversation | |
| conversation: [{'role': 'user', 'content': 'Describe this image'}, | |
| {'role': 'assistant', 'content': 'This is a cat.'}] | |
| """ | |
| if llm_type == "llama3": | |
| input_ids, context, raw_msg = conversation_to_ids_llama3( | |
| conversation, tokenizer | |
| ) | |
| else: | |
| input_ids, context, raw_msg = conversation_to_ids_minicpm( | |
| conversation, tokenizer | |
| ) | |
| ids = torch.from_numpy(np.hstack(input_ids, dtype=np.int32)) | |
| context = torch.from_numpy(np.hstack(context, dtype=np.int8)) | |
| # build target | |
| target = torch.full_like(ids, -100, dtype=torch.int32) | |
| for i in range(1, len(ids)): | |
| if context[i] == 0: | |
| target[i - 1] = ids[i] | |
| if context[i] == 1 and context[i - 1] == 0: | |
| if hasattr(tokenizer, "eot_id"): | |
| target[i - 1] = tokenizer.eot_id | |
| else: | |
| target[i - 1] = tokenizer.eos_id | |
| # build image bound | |
| image_start_tokens = torch.where(ids == tokenizer.im_start_id)[0] | |
| image_start_tokens += 1 | |
| image_end_tokens = torch.where(ids == tokenizer.im_end_id)[0] | |
| if len(image_start_tokens) != len(image_end_tokens): | |
| print("image start token != image end tokens") | |
| if len(image_start_tokens) > 0: | |
| image_bound = torch.hstack( | |
| [image_start_tokens.unsqueeze(-1), image_end_tokens.unsqueeze(-1)] | |
| ) | |
| else: | |
| image_bound = [] | |
| position_ids = torch.arange(ids.size(0)).long() | |
| return { | |
| "input_ids": ids, | |
| "target": target, | |
| "image_bound": image_bound, | |
| "raw_msg": raw_msg, | |
| "position_ids": position_ids | |
| } | |
| def conversation_to_ids_minicpm(conversation, tokenizer): | |
| raw_msg = "" | |
| input_ids = [] | |
| context = [] | |
| for idx, msg in enumerate(conversation): | |
| role = msg["role"] | |
| message = msg["content"] | |
| assert role in ["user", "assistant"] | |
| if role == "user": | |
| prefix = "<用户>" | |
| else: | |
| prefix = "<AI>" | |
| # append eos | |
| if idx == len(conversation) - 1: | |
| message = message + tokenizer.eos_token | |
| prefix_ids = tokenizer.encode(prefix)[1:] # remove bos | |
| message_ids = tokenizer.encode(message)[1:] | |
| input_ids.append(prefix_ids) | |
| input_ids.append(message_ids) | |
| context.append(np.ones((len(prefix_ids),), dtype=np.int8)) | |
| if role == "assistant": | |
| context.append(np.zeros((len(message_ids),), dtype=np.int8)) | |
| else: | |
| context.append(np.ones((len(message_ids),), dtype=np.int8)) | |
| raw_msg += prefix + message | |
| return input_ids, context, raw_msg | |
| def conversation_to_ids_llama3(conversation, tokenizer): | |
| raw_msg = "" | |
| input_ids = [] | |
| context = [] | |
| raw_msg = tokenizer.apply_chat_template( | |
| conversation, tokenize=False, add_generation_prompt=False | |
| ) | |
| input_ids = tokenizer.apply_chat_template( | |
| conversation, tokenize=True, add_generation_prompt=False | |
| ) | |
| input_ids = np.array(input_ids) | |
| start_header_idxs = np.where( | |
| input_ids == tokenizer.convert_tokens_to_ids("<|start_header_id|>") | |
| )[0] | |
| assistant_idxs = np.where( | |
| input_ids == tokenizer.convert_tokens_to_ids("assistant") | |
| )[0] | |
| end_header_idxs = np.where( | |
| input_ids == tokenizer.convert_tokens_to_ids("<|end_header_id|>") | |
| )[0] | |
| eot_idxs = np.where( | |
| input_ids == tokenizer.convert_tokens_to_ids("<|eot_id|>"))[0] | |
| context = np.ones_like(input_ids, dtype=np.int8) | |
| for assistant_idx in assistant_idxs: | |
| if assistant_idx in set((start_header_idxs + end_header_idxs) / 2): | |
| st = assistant_idx + 3 # assistant<|end_header_id|>\n\n | |
| for eot_idx in eot_idxs: | |
| if eot_idx > st: | |
| context[st: eot_idx + 1] = 0 | |
| break | |
| input_ids = np.hstack(input_ids) | |
| context = np.hstack(context) | |
| return input_ids, context, raw_msg | |
| def preprocess( | |
| image, | |
| conversation, | |
| tokenizer, | |
| transform, | |
| query_nums=64, | |
| slice_config=None, | |
| llm_type=None, | |
| patch_size=14, | |
| batch_vision=False, | |
| ): | |
| """ | |
| single image preprocess, the image will be placed at the top of the conversation | |
| """ | |
| conversation = copy.deepcopy(conversation) | |
| assert len(conversation) > 1, "conversation length must large than 2" | |
| assert conversation[0]["role"] == "user", "the first role must be user" | |
| if slice_config is not None: | |
| assert isinstance(slice_config, Dict) | |
| assert "patch_size" in slice_config | |
| assert "max_slice_nums" in slice_config | |
| assert "scale_resolution" in slice_config | |
| default_image_placeholder = ( | |
| tokenizer.im_start + tokenizer.unk_token * query_nums + tokenizer.im_end | |
| ) | |
| if slice_config: | |
| images = [] | |
| source_image, patches, best_grid = slice_image( | |
| image, | |
| slice_config["max_slice_nums"], | |
| slice_config["scale_resolution"], | |
| slice_config["patch_size"], | |
| ) | |
| images.append(source_image) | |
| image_placeholder = default_image_placeholder | |
| if len(patches) > 0: | |
| for i in range(len(patches)): | |
| for j in range(len(patches[0])): | |
| images.append(patches[i][j]) | |
| image_placeholder += get_grid_placeholder( | |
| tokenizer, best_grid, query_nums) | |
| images = [transform(i) for i in images] | |
| else: | |
| images = [transform(image)] | |
| image_placeholder = default_image_placeholder | |
| if "<image>" in conversation[0]["content"]: | |
| conversation[0]["content"] = conversation[0]["content"].replace( | |
| "<image>", image_placeholder | |
| ) | |
| else: | |
| conversation[0]["content"] = ( | |
| image_placeholder + "\n" + conversation[0]["content"] | |
| ) | |
| input_dict = conversation_to_ids(conversation, tokenizer, llm_type) | |
| if batch_vision: | |
| tgt_sizes = [] | |
| reshape_images = [] | |
| for image in images: | |
| H, W = image.shape[1:] | |
| reshape_image = reshape_by_patch(image, patch_size) | |
| reshape_images.append(reshape_image) | |
| tgt_sizes.append([H // patch_size, W // patch_size]) | |
| if tgt_sizes: | |
| tgt_sizes = torch.Tensor(tgt_sizes).type(torch.int32) | |
| input_dict["pixel_values"] = reshape_images | |
| input_dict["tgt_sizes"] = tgt_sizes | |
| else: | |
| input_dict["pixel_values"] = images | |
| input_dict["tgt_sizes"] = [] | |
| return input_dict | |
| def slice_image( | |
| image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False | |
| ): | |
| original_size = image.size | |
| original_width, original_height = original_size | |
| log_ratio = math.log(original_width / original_height) | |
| ratio = original_width * original_height / \ | |
| (scale_resolution * scale_resolution) | |
| multiple = min(math.ceil(ratio), max_slice_nums) | |
| source_image = None | |
| best_grid = None | |
| patches = [] | |
| if multiple <= 1 or never_split: | |
| # dont need to slice, upsample | |
| best_size = find_best_resize( | |
| original_size, scale_resolution, patch_size, allow_upscale=True | |
| ) | |
| source_image = image.resize(best_size, Image.Resampling.BICUBIC) | |
| else: | |
| candidate_split_grids_nums = [] | |
| for i in [multiple - 1, multiple, multiple + 1]: | |
| if i == 1 or i > max_slice_nums: | |
| continue | |
| candidate_split_grids_nums.append(i) | |
| # source image, down-sampling and ensure divided by patch_size | |
| best_resize = find_best_resize( | |
| original_size, scale_resolution, patch_size) | |
| source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC) | |
| candidate_grids = [] | |
| # find best grid | |
| for split_grids_nums in candidate_split_grids_nums: | |
| m = 1 | |
| while m <= split_grids_nums: | |
| if split_grids_nums % m == 0: | |
| candidate_grids.append([m, split_grids_nums // m]) | |
| m += 1 | |
| best_grid = [1, 1] | |
| min_error = float("inf") | |
| for grid in candidate_grids: | |
| error = abs(log_ratio - math.log(grid[0] / grid[1])) | |
| if error < min_error: | |
| best_grid = grid | |
| min_error = error | |
| refine_size = get_refine_size( | |
| original_size, best_grid, scale_resolution, patch_size, allow_upscale=True | |
| ) | |
| refine_image = image.resize(refine_size, Image.Resampling.BICUBIC) | |
| patches = split_to_patches(refine_image, best_grid) | |
| return source_image, patches, best_grid | |
| def ensure_divide(length, patch_size): | |
| return max(round(length / patch_size) * patch_size, patch_size) | |
| def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False): | |
| width, height = original_size | |
| if (width * height > scale_resolution * scale_resolution) or allow_upscale: | |
| r = width / height | |
| height = int(scale_resolution / math.sqrt(r)) | |
| width = int(height * r) | |
| best_width = ensure_divide(width, patch_size) | |
| best_height = ensure_divide(height, patch_size) | |
| return (best_width, best_height) | |
| def get_refine_size( | |
| original_size, grid, scale_resolution, patch_size, allow_upscale=False | |
| ): | |
| width, height = original_size | |
| grid_x, grid_y = grid | |
| refine_width = ensure_divide(width, grid_x) | |
| refine_height = ensure_divide(height, grid_y) | |
| grid_width = refine_width / grid_x | |
| grid_height = refine_height / grid_y | |
| best_grid_size = find_best_resize( | |
| (grid_width, grid_height), | |
| scale_resolution, | |
| patch_size, | |
| allow_upscale=allow_upscale, | |
| ) | |
| refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y) | |
| return refine_size | |
| def split_to_patches(image, grid): | |
| patches = [] | |
| width, height = image.size | |
| grid_x = int(width / grid[0]) | |
| grid_y = int(height / grid[1]) | |
| for i in range(0, height, grid_y): | |
| images = [] | |
| for j in range(0, width, grid_x): | |
| box = (j, i, j + grid_x, i + grid_y) | |
| patch = image.crop(box) | |
| images.append(patch) | |
| patches.append(images) | |
| return patches | |
| def get_grid_placeholder(tokenizer, grid, query_num): | |
| image_placeholder = ( | |
| tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end | |
| ) | |
| cols = grid[0] | |
| rows = grid[1] | |
| slices = [] | |
| for i in range(rows): | |
| lines = [] | |
| for j in range(cols): | |
| lines.append(image_placeholder) | |
| slices.append("".join(lines)) | |
| slice_placeholder = tokenizer.slice_start + \ | |
| "\n".join(slices) + tokenizer.slice_end | |
| return slice_placeholder | |
| def reshape_by_patch(image_tensor, patch_size): | |
| """ | |
| :param image_tensor: shape [3, H, W] | |
| :param patch_size: | |
| :return: [3, patch_size, HW/patch_size] | |
| """ | |
| patches = torch.nn.functional.unfold( | |
| image_tensor, (patch_size, patch_size), stride=(patch_size, patch_size) | |
| ) | |
| patches = patches.reshape(image_tensor.size(0), patch_size, patch_size, -1) | |
| patches = patches.permute(0, 1, 3, 2).reshape( | |
| image_tensor.size(0), patch_size, -1) | |
| return patches | |