Hisab Cloud
Upload folder using huggingface_hub
45e92bd verified
from ..smp import listinstr
dataset_URLs = {
# MMBench v1.0
'MMBench_DEV_EN': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_DEV_EN.tsv',
'MMBench_TEST_EN': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_TEST_EN.tsv',
'MMBench_DEV_CN': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_DEV_CN.tsv',
'MMBench_TEST_CN': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_TEST_CN.tsv',
'MMBench': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench.tsv', # Internal Only
'MMBench_CN': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_CN.tsv', # Internal Only
# MMBench v1.1
'MMBench_DEV_EN_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_DEV_EN_V11.tsv',
'MMBench_TEST_EN_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_TEST_EN_V11.tsv',
'MMBench_DEV_CN_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_DEV_CN_V11.tsv',
'MMBench_TEST_CN_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_TEST_CN_V11.tsv',
'MMBench_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_V11.tsv', # Internal Only
'MMBench_CN_V11': 'https://opencompass.openxlab.space/utils/VLMEval/MMBench_CN_V11.tsv', # Internal Only
# CCBench
'CCBench': 'https://opencompass.openxlab.space/utils/VLMEval/CCBench.tsv',
'MME': 'https://opencompass.openxlab.space/utils/VLMEval/MME.tsv',
'SEEDBench_IMG': 'https://opencompass.openxlab.space/utils/VLMEval/SEEDBench_IMG.tsv',
'CORE_MM': 'https://opencompass.openxlab.space/utils/VLMEval/CORE_MM.tsv',
'MMVet': 'https://opencompass.openxlab.space/utils/VLMEval/MMVet.tsv',
'COCO_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/COCO_VAL.tsv',
'OCRVQA_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/OCRVQA_TEST.tsv',
'OCRVQA_TESTCORE': 'https://opencompass.openxlab.space/utils/VLMEval/OCRVQA_TESTCORE.tsv',
'TextVQA_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/TextVQA_VAL.tsv',
'MMMU_DEV_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/MMMU_DEV_VAL.tsv',
'MMMU_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/MMMU_TEST.tsv',
'MathVista_MINI': 'https://opencompass.openxlab.space/utils/VLMEval/MathVista_MINI.tsv',
'ScienceQA_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/ScienceQA_VAL.tsv',
'ScienceQA_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/ScienceQA_TEST.tsv',
'HallusionBench': 'https://opencompass.openxlab.space/utils/VLMEval/HallusionBench.tsv',
'DocVQA_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/DocVQA_VAL.tsv',
'DocVQA_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/DocVQA_TEST.tsv',
'InfoVQA_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/InfoVQA_VAL.tsv',
'InfoVQA_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/InfoVQA_TEST.tsv',
'AI2D_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/AI2D_TEST.tsv',
'LLaVABench': 'https://opencompass.openxlab.space/utils/VLMEval/LLaVABench.tsv',
'OCRBench': 'https://opencompass.openxlab.space/utils/VLMEval/OCRBench.tsv',
'ChartQA_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/ChartQA_TEST.tsv',
'MMStar': 'https://opencompass.openxlab.space/utils/VLMEval/MMStar.tsv',
'RealWorldQA': 'https://opencompass.openxlab.space/utils/VLMEval/RealWorldQA.tsv',
'POPE': 'https://opencompass.openxlab.space/utils/VLMEval/POPE.tsv',
}
dataset_md5_dict = {
# MMBench v1.0
'MMBench_DEV_EN': 'b6caf1133a01c6bb705cf753bb527ed8',
'MMBench_TEST_EN': '6939fadb0ce626fefc0bdc9c64efc528',
'MMBench_DEV_CN': '08b8fc3324a5ed74155350f57be69fbd',
'MMBench_TEST_CN': '7e1239baf0ee4c8b513e19705a0f317e',
'MMBench': '4115aea3383f3dd0083be6a633e0f820', # Internal Only
'MMBench_CN': '2e053ffc90ea598b1feae13c36dc13ee', # Internal Only
# MMBench v1.1
'MMBench_DEV_EN_V11': '30c05be8f2f347a50be25aa067248184',
'MMBench_TEST_EN_V11': '26f0f15381a21720255091d3e0316ce6',
'MMBench_DEV_CN_V11': '593f9b5f6bea453d870a798b34ae4f37',
'MMBench_TEST_CN_V11': '74bbe4556dac745613c7cbe5ad787050',
'MMBench_V11': 'b9276414f57af1308dcc4d0cd9b42e7c', # Internal Only
'MMBench_CN_V11': '95f6980dd1b4de38e3cbffe0305a3f25', # Internal Only
# CCBench
'CCBench': '1de88b4257e7eee3f60b18d45eda6f07',
'MME': 'b36b43c3f09801f5d368627fb92187c3',
'SEEDBench_IMG': '68017231464752261a2526d6ca3a10c0',
'CORE_MM': '8a8da2f2232e79caf98415bfdf0a202d',
'MMVet': '748aa6d4aa9d4de798306a63718455e3',
'COCO_VAL': '72a5079dead060269ac222c5aa5128af',
'OCRVQA_TEST': 'ca46a6d74b403e9d6c0b670f6fc00db9',
'OCRVQA_TESTCORE': 'c5239fe77db8bdc1f2ad8e55e0d1fe97',
'TextVQA_VAL': 'b233b31f551bbf4056f2f955da3a92cd',
'MMMU_DEV_VAL': '521afc0f3bf341e6654327792781644d',
'MMMU_TEST': 'c19875d11a2d348d07e5eb4bdf33166d',
'MathVista_MINI': 'f199b98e178e5a2a20e7048f5dcb0464',
'ScienceQA_VAL': '96320d05e142e585e7204e72affd29f3',
'ScienceQA_TEST': 'e42e9e00f9c59a80d8a5db35bc32b71f',
'HallusionBench': '0c23ac0dc9ef46832d7a24504f2a0c7c',
'DocVQA_VAL': 'd5ee77e1926ff10690d469c56b73eabf',
'DocVQA_TEST': '6a2f28cac26ef2d3447374e8c6f6c8e9',
'InfoVQA_VAL': '2342e9c225222f0ef4dec545ebb126fe',
'InfoVQA_TEST': 'df535bf51b88dc9718252c34131a6227',
'AI2D_TEST': '0f593e0d1c7df9a3d69bf1f947e71975',
'LLaVABench': 'd382a093f749a697820d3dadd61c8428',
'OCRBench': 'e953d98a987cc6e26ef717b61260b778',
'ChartQA_TEST': 'c902e0aa9be5582a7aad6dcf52734b42',
'MMStar': 'e1ecd2140806c1b1bbf54b43372efb9e',
'RealWorldQA': '92321028d2bc29040284b6674721e48f',
'POPE': 'c12f5acb142f2ef1f85a26ba2fbe41d5',
}
img_root_map = {k: k for k in dataset_URLs}
img_root_map.update({
# MMBench v1.0
'MMBench_DEV_EN': 'MMBench',
'MMBench_TEST_EN': 'MMBench',
'MMBench_DEV_CN': 'MMBench',
'MMBench_TEST_CN': 'MMBench',
'MMBench': 'MMBench', # Internal Only
'MMBench_CN': 'MMBench', # Internal Only
# MMBench v1.1
'MMBench_DEV_EN_V11': 'MMBench_V11',
'MMBench_TEST_EN_V11': 'MMBench_V11',
'MMBench_DEV_CN_V11': 'MMBench_V11',
'MMBench_TEST_CN_V11': 'MMBench_V11',
'MMBench_V11': 'MMBench_V11', # Internal Only
'MMBench_CN_V11': 'MMBench_V11', # Internal Only
'COCO_VAL': 'COCO',
'OCRVQA_TEST': 'OCRVQA',
'OCRVQA_TESTCORE': 'OCRVQA',
'TextVQA_VAL': 'TextVQA',
'MMMU_DEV_VAL': 'MMMU',
'MMMU_TEST': 'MMMU',
'MathVista_MINI': 'MathVista',
'HallusionBench': 'Hallusion',
'DocVQA_VAL': 'DocVQA',
'DocVQA_TEST': 'DocVQA_TEST',
'OCRBench': 'OCRBench',
'ChartQA_TEST': 'ChartQA_TEST',
'InfoVQA_VAL': 'InfoVQA_VAL',
'InfoVQA_TEST': 'InfoVQA_TEST',
'MMStar': 'MMStar',
'RealWorldQA': 'RealWorldQA',
'POPE': 'POPE',
})
assert set(dataset_URLs) == set(img_root_map)
def DATASET_TYPE(dataset):
# Dealing with Custom Dataset
dataset = dataset.lower()
if listinstr(['mmbench', 'seedbench', 'ccbench', 'mmmu', 'scienceqa', 'ai2d', 'mmstar', 'realworldqa'], dataset):
return 'multi-choice'
elif listinstr(['mme', 'hallusion', 'pope'], dataset):
return 'Y/N'
elif 'coco' in dataset:
return 'Caption'
elif listinstr(['ocrvqa', 'textvqa', 'chartqa', 'mathvista', 'docvqa', 'infovqa', 'llavabench',
'mmvet', 'ocrbench'], dataset):
return 'VQA'
else:
if dataset not in dataset_URLs:
import warnings
warnings.warn(f"Dataset {dataset} not found in dataset_URLs, will use 'multi-choice' as the default TYPE.")
return 'multi-choice'
else:
return 'QA'
def abbr2full(s):
datasets = [x for x in img_root_map]
ins = [s in d for d in datasets]
if sum(ins) == 1:
for d in datasets:
if s in d:
return d
else:
return s