Spaces:
Configuration error
Configuration error
from vlmeval.evaluate.misc import build_judge | |
from vlmeval.smp import * | |
from vlmeval.utils import track_progress_rich | |
from vlmeval.utils.matching_util import can_infer | |
def get_gpt4_ICE(): | |
example_1 = """ | |
Hint: Please answer the question requiring an integer answer and provide the final value, | |
e.g., 1, 2, 3, at the end.\n | |
Question: Which number is missing?\n | |
Model response: The number missing in the sequence is 14.\n | |
Extracted answer: 14 | |
""" | |
example_2 = """ | |
Hint: Please answer the question requiring a floating-point number with one decimal place and provide the final value, | |
e.g., 1.2, 1.3, 1.4, at the end.\n | |
Question: What is the fraction of females facing the camera?\n | |
Model response: The fraction of females facing the camera is 0.6, | |
which means that six out of ten females in the group are facing the camera.\n | |
Extracted answer: 0.6 | |
""" | |
example_3 = """ | |
Hint: Please answer the question requiring a floating-point number with two decimal places and provide the final value, | |
e.g., 1.23, 1.34, 1.45, at the end.\n | |
Question: How much money does Luca need to buy a sour apple candy and a butter-scotch candy? (Unit: $)\n | |
Model response: Luca needs $1.45 to buy a sour apple candy and a butterscotch candy.\n | |
Extracted answer: 1.45 | |
""" | |
example_4 = """ | |
Hint: Please answer the question requiring a Python list as an answer and provide the final list, | |
e.g., [1, 2, 3], [1.2, 1.3, 1.4], at the end.\n | |
Question: Between which two years does the line graph saw its maximum peak?\n | |
Model response: The line graph saw its maximum peak between 2007 and 2008.\n | |
Extracted answer: [2007, 2008] | |
""" | |
example_5 = """ | |
Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.\n | |
Question: What fraction of the shape is blue?\n | |
Choices: (A) 3/11 (B) 8/11 (C) 6/11 (D) 3/5\n | |
Model response: The correct answer is (B) 8/11.\n | |
Extracted answer: B | |
""" | |
return [example_1, example_2, example_3, example_4, example_5] | |
def build_mathvista_gpt4_prompt(line): | |
task_description = """ | |
Please read the following example. | |
Then extract the answer from the model response and type it at the end of the prompt.\n | |
""" | |
question = line['question'] | |
prediction = str(line['prediction']) | |
prompt = task_description | |
examples = get_gpt4_ICE() | |
for example in examples: | |
prompt += example + '\n' | |
prompt += question + '\n' | |
prompt += 'Model respone: ' + prediction | |
prompt += 'Extracted answer:' | |
return prompt | |
def list_to_dict(lst): | |
return {chr(65 + i): val for i, val in enumerate(lst)} | |
def post_check(line, prefetch=False): | |
res = None | |
ans = line['answer'] | |
response = line['prediction'] if prefetch else line['res'] | |
try: | |
if line['question_type'] == 'multi_choice': | |
ans = line['answer_option'] | |
choices = list_to_dict(eval(line['choices'])) | |
res = can_infer(response, choices) | |
if prefetch: | |
return res | |
else: | |
if line['answer_type'] == 'integer': | |
res = int(response) | |
ans = int(line['answer']) | |
elif line['answer_type'] == 'float': | |
res = float(response) | |
ans = float(line['answer']) | |
else: | |
res = str(res) | |
ans = str(ans) | |
except ValueError: | |
pass | |
if res == ans: | |
return res if prefetch else True | |
else: | |
return False | |
def MathVista_auxeval(model, line): | |
prompt = build_mathvista_gpt4_prompt(line) | |
log = '' | |
retry = 5 | |
if post_check(line, prefetch=True): | |
res = post_check(line, prefetch=True) | |
return dict(log='Prefetch succeed', res=res) | |
for i in range(retry): | |
prediction = line['prediction'] | |
res = model.generate(prompt, temperature=i * 0.5) | |
if res is None: | |
log += f'Try {i}: output is {prediction}, failed to parse.\n' | |
else: | |
log += 'Succeed' | |
return dict(log=log, res=res) | |
log += 'All 5 retries failed.\n' | |
return dict(log=log, res='') | |
def MathVista_acc(result_file): | |
data = load(result_file) | |
tot = defaultdict(lambda: 0) | |
fetch = defaultdict(lambda: 0) | |
hit = defaultdict(lambda: 0) | |
lt = len(data) | |
skill_list = [] | |
for i in range(lt): | |
item = data.iloc[i] | |
cate = item['task'] | |
tot['Overall'] += 1 | |
try: | |
skills = eval(item['skills']) | |
except SyntaxError: | |
skills = [item['skills']] | |
for skill in skills: | |
if skill not in skill_list: | |
skill_list.append(skill) | |
tot[skill] += 1 | |
tot[cate] += 1 | |
if item['log'] == 'Prefetch succeed': | |
fetch['Overall'] += 1 | |
fetch[cate] += 1 | |
for skill in skills: | |
fetch[skill] += 1 | |
if post_check(item, prefetch=False): | |
hit['Overall'] += 1 | |
hit[cate] += 1 | |
for skill in skills: | |
hit[skill] += 1 | |
res = defaultdict(list) | |
for k in tot.keys(): | |
res['Task&Skill'].append(k) | |
res['tot'].append(tot[k]) | |
res['prefetch'].append(fetch[k]) | |
res['hit'].append(hit[k]) | |
res['prefetch_rate'].append(fetch[k] / tot[k] * 100) | |
res['acc'].append(hit[k] / tot[k] * 100) | |
res = pd.DataFrame(res) | |
return res | |
def MathVista_eval(eval_file, **judge_kwargs): | |
logger = get_logger('Evaluation') | |
model = judge_kwargs['model'] | |
suffix = eval_file.split('.')[-1] | |
storage = eval_file.replace(f'.{suffix}', f'_{model}.xlsx') | |
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl') | |
nproc = judge_kwargs.pop('nproc', 4) | |
if osp.exists(storage): | |
logger.warning(f'GPT scoring file {storage} already exists, will reuse it in MathVista_eval. ') | |
else: | |
data = load(eval_file) | |
model = build_judge(max_tokens=128, **judge_kwargs) | |
lt = len(data) | |
lines = [data.iloc[i] for i in range(lt)] | |
tups = [(model, line) for line in lines] | |
indices = [line['index'] for line in lines] | |
ans = {} | |
if osp.exists(tmp_file): | |
ans = load(tmp_file) | |
tups = [x for x, i in zip(tups, indices) if i not in ans] | |
indices = [i for i in indices if i not in ans] | |
if len(indices): | |
new_results = track_progress_rich( | |
MathVista_auxeval, tups, nproc=nproc, chunksize=nproc, | |
keys=indices, save=tmp_file) | |
ans = load(tmp_file) | |
for k, v in zip(indices, new_results): | |
assert k in ans | |
assert ans[k]['log'] == v['log'] and ans[k]['res'] == v['res'] | |
log_map, res_map = {}, {} | |
all_inds = [line['index'] for line in lines] | |
for k in all_inds: | |
log_map[k] = ans[k]['log'] | |
res_map[k] = ans[k]['res'] | |
data['res'] = [res_map[idx] for idx in data['index']] | |
data['log'] = [log_map[idx] for idx in data['index']] | |
dump(data, storage) | |
score = MathVista_acc(storage) | |
score_pth = storage.replace('.xlsx', '_score.csv') | |
dump(score, score_pth) | |
logger.info(f'MathVista_eval successfully finished evaluating {eval_file}, results saved in {score_pth}') | |
logger.info('Score: ') | |
logger.info(score) | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='Inference LLM Answers. ') | |
parser.add_argument('data', type=str, help='The question set for inference, in excel / tsv / json format. ') | |
parser.add_argument( | |
'--model', | |
type=str, | |
help='The LLM (GPT) used for inference. ', | |
default='gpt-4-turbo', | |
choices=['gpt-4-0613', 'gpt-4-turbo', 'chatgpt-1106', 'chatgpt-0613']) | |
parser.add_argument('--nproc', type=int, default=4) | |
parser.add_argument('--verbose', action='store_true') | |
args = parser.parse_args() | |
return args | |
if __name__ == '__main__': | |
load_env() | |
args = parse_args() | |
judge_kwargs = dict(model=args.model, nproc=args.nproc, verbose=args.verbose) | |
if 'OPENAI_API_KEY_JUDGE' in os.environ and os.environ['OPENAI_API_KEY_JUDGE']: | |
judge_kwargs['key'] = os.environ['OPENAI_API_KEY_JUDGE'] | |
if 'OPENAI_API_BASE_JUDGE' in os.environ and os.environ['OPENAI_API_BASE_JUDGE']: | |
judge_kwargs['api_base'] = os.environ['OPENAI_API_BASE_JUDGE'] | |
MathVista_eval(eval_file=args.data, **judge_kwargs) | |