Hisab Cloud
Upload folder using huggingface_hub
45e92bd verified
from vlmeval.smp import *
from pycocoevalcap.bleu.bleu import Bleu
from pycocoevalcap.rouge.rouge import Rouge
from pycocoevalcap.cider.cider import Cider
class COCO_Caption_Scorer():
def __init__(self, ref, gt):
self.ref = ref
self.gt = gt
print('setting up scorers...')
self.scorers = [
(Bleu(4), ['Bleu_1', 'Bleu_2', 'Bleu_3', 'Bleu_4']),
# (Meteor(), "METEOR"), # need java version 11.0.16+
(Rouge(), 'ROUGE_L'),
(Cider(), 'CIDEr'),
# (Spice(), "SPICE"), # need java version 11.0.16+
]
def compute_scores(self):
total_scores = {}
for scorer, method in self.scorers:
print('computing %s score...' % (scorer.method()))
score, scores = scorer.compute_score(self.gt, self.ref)
if type(method) == list:
for sc, scs, m in zip(score, scores, method):
print('%s: %0.3f' % (m, sc * 100))
total_scores['Bleu'] = [x * 100 for x in score]
else:
print('%s: %0.3f' % (method, score * 100))
total_scores[method] = score * 100
print('*****DONE*****')
for key, value in total_scores.items():
print('{}:{}'.format(key, value))
return total_scores
def COCO_eval(eval_file, nproc=4, verbose=False):
logger = get_logger('Evaluation')
data = load(eval_file)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
ref = {}
gt = {}
for i, line in enumerate(lines):
ref[str(i)] = [str(line['prediction'])]
gt[str(i)] = eval(line['answer'])
scorer = COCO_Caption_Scorer(ref, gt)
coco_caption_score_dict = scorer.compute_scores()
score_pth = eval_file.replace('.xlsx', '_score.json')
dump(coco_caption_score_dict, score_pth)
logger.info(f'COCO_eval successfully finished evaluating {eval_file}, results saved in {score_pth}')
logger.info('Score: ')
for key, value in coco_caption_score_dict.items():
logger.info('{}:{}'.format(key, value))
def parse_args():
parser = argparse.ArgumentParser(description='Inference LLM Answers. ')
parser.add_argument('--data', type=str, help='The question set for inference, in excel / tsv / json format. ')
parser.add_argument('--nproc', type=int, default=4)
parser.add_argument('--verbose', action='store_true')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
COCO_eval(eval_file=args.data, nproc=args.nproc, verbose=args.verbose)