|
import os |
|
import gradio as gr |
|
import torch |
|
from diffusers import StableDiffusionPipeline, DDPMScheduler, Trainer, TrainingArguments, DiffusionPipeline |
|
from datasets import load_dataset |
|
from transformers import CLIPTextModel, CLIPTokenizer, PreTrainedModel |
|
from werkzeug.security import generate_password_hash, check_password_hash |
|
import json |
|
import time |
|
from pathlib import Path |
|
from PIL import Image |
|
from diffusers import DreamBoothTrainer, DreamBoothPipeline |
|
from accelerate import Accelerator |
|
|
|
|
|
MODEL_NAME = "runwayml/stable-diffusion-v1-5" |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(MODEL_NAME) |
|
pipe.to(device) |
|
|
|
|
|
user_data_file = "user_data.json" |
|
|
|
|
|
if os.path.exists(user_data_file): |
|
with open(user_data_file, "r") as f: |
|
users = json.load(f) |
|
else: |
|
users = {} |
|
|
|
saved_models = {} |
|
|
|
|
|
def save_users_data(): |
|
with open(user_data_file, "w") as f: |
|
json.dump(users, f) |
|
|
|
|
|
def train_model(user_email, images, progress): |
|
if not user_email: |
|
return "يجب تسجيل الدخول لحفظ النموذج." |
|
|
|
user_model_id = f"user_model_{user_email}" |
|
|
|
|
|
user_image_folder = Path(f"user_images/{user_email}") |
|
user_image_folder.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
for img in images: |
|
img.save(user_image_folder / img.name) |
|
|
|
|
|
image_paths = [str(user_image_folder / img.name) for img in images] |
|
dataset = load_dataset('imagefolder', data_dir=str(user_image_folder)) |
|
|
|
|
|
accelerator = Accelerator() |
|
|
|
|
|
model = StableDiffusionPipeline.from_pretrained(MODEL_NAME) |
|
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") |
|
|
|
|
|
trainer = DreamBoothTrainer( |
|
model=model, |
|
args=TrainingArguments( |
|
output_dir=f"user_models/{user_email}", |
|
per_device_train_batch_size=4, |
|
num_train_epochs=1, |
|
gradient_accumulation_steps=2, |
|
logging_dir='./logs', |
|
logging_steps=10, |
|
report_to="none" |
|
), |
|
train_dataset=dataset["train"], |
|
tokenizer=tokenizer |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
model.save_pretrained(f"user_models/{user_email}") |
|
saved_models[user_email] = user_model_id |
|
|
|
return f"✅ تم حفظ النموذج بنجاح: {user_model_id}" |
|
|
|
|
|
def generate_image(prompt, user_email=None): |
|
if user_email and user_email in saved_models: |
|
model_id = saved_models[user_email] |
|
model = StableDiffusionPipeline.from_pretrained(f"user_models/{user_email}") |
|
model.to(device) |
|
result = model(prompt).images[0] |
|
else: |
|
result = pipe(prompt).images[0] |
|
|
|
return result |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# 🖼️ إنشاء صور مخصصة باستخدام الذكاء الاصطناعي") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
image_input = gr.Files(label="📤 رفع صورك للتدريب") |
|
user_email_input = gr.Textbox(label="📧 بريدك الإلكتروني (اختياري لحفظ النموذج)") |
|
train_button = gr.Button("🔧 تدريب النموذج") |
|
train_output = gr.Textbox(label="🔔 نتيجة التدريب") |
|
progress_bar = gr.Progress() |
|
|
|
with gr.Column(): |
|
prompt_input = gr.Textbox(label="✏️ أدخل البرومبت لإنشاء صورة") |
|
generate_button = gr.Button("🎨 إنشاء صورة") |
|
output_image = gr.Image(label="📷 الصورة الناتجة") |
|
|
|
train_button.click(train_model, inputs=[user_email_input, image_input, progress_bar], outputs=train_output) |
|
generate_button.click(generate_image, inputs=[prompt_input, user_email_input], outputs=output_image) |
|
|
|
gr.Markdown("### 🔑 تسجيل الدخول / التسجيل") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
login_email = gr.Textbox(label="📧 البريد الإلكتروني") |
|
login_password = gr.Textbox(label="🔑 كلمة المرور", type="password") |
|
login_button = gr.Button("🚀 تسجيل الدخول") |
|
login_output = gr.Textbox(label="🔔 حالة تسجيل الدخول") |
|
|
|
with gr.Column(): |
|
register_email = gr.Textbox(label="📧 البريد الإلكتروني للتسجيل") |
|
register_password = gr.Textbox(label="🔑 كلمة المرور للتسجيل", type="password") |
|
register_button = gr.Button("📝 تسجيل حساب جديد") |
|
register_output = gr.Textbox(label="🔔 حالة التسجيل") |
|
|
|
login_button.click(login, inputs=[login_email, login_password], outputs=login_output) |
|
register_button.click(register, inputs=[register_email, register_password], outputs=register_output) |
|
|
|
|
|
demo.launch(share=True) |