Save a custom decoding strategy with your model | |
If you would like to share your fine-tuned model with a specific generation configuration, you can: | |
* Create a [GenerationConfig] class instance | |
* Specify the decoding strategy parameters | |
* Save your generation configuration with [GenerationConfig.save_pretrained], making sure to leave its config_file_name argument empty | |
* Set push_to_hub to True to upload your config to the model's repo | |
thon | |
from transformers import AutoModelForCausalLM, GenerationConfig | |
model = AutoModelForCausalLM.from_pretrained("my_account/my_model") # doctest: +SKIP | |
generation_config = GenerationConfig( | |
max_new_tokens=50, do_sample=True, top_k=50, eos_token_id=model.config.eos_token_id | |
) | |
generation_config.save_pretrained("my_account/my_model", push_to_hub=True) # doctest: +SKIP | |
You can also store several generation configurations in a single directory, making use of the config_file_name | |
argument in [GenerationConfig.save_pretrained]. |