results = benchmark.run() | |
print(results) | |
==================== INFERENCE - SPEED - RESULT ==================== | |
Model Name Batch Size Seq Length Time in s | |
google-bert/bert-base-uncased 8 8 0.006 | |
google-bert/bert-base-uncased 8 32 0.006 | |
google-bert/bert-base-uncased 8 128 0.018 | |
google-bert/bert-base-uncased 8 512 0.088 | |
==================== INFERENCE - MEMORY - RESULT ==================== | |
Model Name Batch Size Seq Length Memory in MB | |
google-bert/bert-base-uncased 8 8 1227 | |
google-bert/bert-base-uncased 8 32 1281 | |
google-bert/bert-base-uncased 8 128 1307 | |
google-bert/bert-base-uncased 8 512 1539 | |
==================== ENVIRONMENT INFORMATION ==================== | |
transformers_version: 2.11.0 | |
framework: PyTorch | |
use_torchscript: False | |
framework_version: 1.4.0 | |
python_version: 3.6.10 | |
system: Linux | |
cpu: x86_64 | |
architecture: 64bit | |
date: 2020-06-29 | |
time: 08:58:43.371351 | |
fp16: False | |
use_multiprocessing: True | |
only_pretrain_model: False | |
cpu_ram_mb: 32088 | |
use_gpu: True | |
num_gpus: 1 | |
gpu: TITAN RTX | |
gpu_ram_mb: 24217 | |
gpu_power_watts: 280.0 | |
gpu_performance_state: 2 | |
use_tpu: False | |
</pt> | |
<tf>bash | |
python examples/tensorflow/benchmarking/run_benchmark_tf.py --help | |
An instantiated benchmark object can then simply be run by calling benchmark.run(). |