|
We then just store those arguments, |
|
after checking the validity of a few of them. |
|
thon |
|
from transformers import PretrainedConfig |
|
from typing import List |
|
class ResnetConfig(PretrainedConfig): |
|
model_type = "resnet" |
|
def __init__( |
|
self, |
|
block_type="bottleneck", |
|
layers: List[int] = [3, 4, 6, 3], |
|
num_classes: int = 1000, |
|
input_channels: int = 3, |
|
cardinality: int = 1, |
|
base_width: int = 64, |
|
stem_width: int = 64, |
|
stem_type: str = "", |
|
avg_down: bool = False, |
|
**kwargs, |
|
): |
|
if block_type not in ["basic", "bottleneck"]: |
|
raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.") |
|
if stem_type not in ["", "deep", "deep-tiered"]: |
|
raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.") |
|
|
|
self.block_type = block_type |
|
self.layers = layers |
|
self.num_classes = num_classes |
|
self.input_channels = input_channels |
|
self.cardinality = cardinality |
|
self.base_width = base_width |
|
self.stem_width = stem_width |
|
self.stem_type = stem_type |
|
self.avg_down = avg_down |
|
super().__init__(**kwargs) |
|
|
|
The three important things to remember when writing you own configuration are the following: |
|
- you have to inherit from PretrainedConfig, |
|
- the __init__ of your PretrainedConfig must accept any kwargs, |
|
- those kwargs need to be passed to the superclass __init__. |
|
The inheritance is to make sure you get all the functionality from the 🤗 Transformers library, while the two other |
|
constraints come from the fact a PretrainedConfig has more fields than the ones you are setting. |