File size: 770 Bytes
5fa1a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
Take an example of the use cases on Transformers question-answering Training with IPEX using BF16 auto mixed precision on CPU: python run_qa.py \ --model_name_or_path google-bert/bert-base-uncased \ --dataset_name squad \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/debug_squad/ \ --use_ipex \ --bf16 \ --use_cpu If you want to enable use_ipex and bf16 in your script, add these parameters to TrainingArguments like this: diff training_args = TrainingArguments( output_dir=args.output_path, + bf16=True, + use_ipex=True, + use_cpu=True, **kwargs ) Practice example Blog: Accelerating PyTorch Transformers with Intel Sapphire Rapids |