File size: 908 Bytes
5fa1a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Specify from_tf=True to convert a checkpoint from TensorFlow to PyTorch:

pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True)
pt_model.save_pretrained("path/to/awesome-name-you-picked")
``
</pt>
<tf>
Specifyfrom_pt=True` to convert a checkpoint from PyTorch to TensorFlow:

tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True)

Then you can save your new TensorFlow model with its new checkpoint:

tf_model.save_pretrained("path/to/awesome-name-you-picked")

If a model is available in Flax, you can also convert a checkpoint from PyTorch to Flax:

flax_model = FlaxDistilBertForSequenceClassification.from_pretrained(
     "path/to/awesome-name-you-picked", from_pt=True
 )

Push a model during training

Sharing a model to the Hub is as simple as adding an extra parameter or callback.