File size: 1,249 Bytes
5fa1a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
For instance, let's say we want to use a custom pipeline for sentence pair classification like this:

import numpy as np
from transformers import Pipeline
def softmax(outputs):
    maxes = np.max(outputs, axis=-1, keepdims=True)
    shifted_exp = np.exp(outputs - maxes)
    return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)
class PairClassificationPipeline(Pipeline):
    def _sanitize_parameters(self, **kwargs):
        preprocess_kwargs = {}
        if "second_text" in kwargs:
            preprocess_kwargs["second_text"] = kwargs["second_text"]
        return preprocess_kwargs, {}, {}
def preprocess(self, text, second_text=None):
    return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework)

def _forward(self, model_inputs):
    return self.model(**model_inputs)

def postprocess(self, model_outputs):
    logits = model_outputs.logits[0].numpy()
    probabilities = softmax(logits)

    best_class = np.argmax(probabilities)
    label = self.model.config.id2label[best_class]
    score = probabilities[best_class].item()
    logits = logits.tolist()
    return {"label": label, "score": score, "logits": logits}

The implementation is framework agnostic, and will work for PyTorch and TensorFlow models.