File size: 638 Bytes
5fa1a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
thon def postprocess(self, model_outputs, top_k=5): best_class = model_outputs["logits"].softmax(-1) # Add logic to handle top_k return best_class def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} if "maybe_arg" in kwargs: preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"] postprocess_kwargs = {} if "top_k" in kwargs: postprocess_kwargs["top_k"] = kwargs["top_k"] return preprocess_kwargs, {}, postprocess_kwargs Try to keep the inputs/outputs very simple and ideally JSON-serializable as it makes the pipeline usage very easy without requiring users to understand new kinds of objects. |