Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Install required libraries
|
2 |
+
!pip install gradio moviepy torch torchaudio soundfile pillow numpy scipy transformers
|
3 |
+
|
4 |
+
# Import libraries
|
5 |
+
import os
|
6 |
+
import gradio as gr
|
7 |
+
import torch
|
8 |
+
import soundfile as sf
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import logging
|
13 |
+
from scipy.io.wavfile import write as write_wav
|
14 |
+
from scipy import signal
|
15 |
+
from moviepy.editor import VideoFileClip, AudioFileClip
|
16 |
+
from transformers import AutoProcessor, AutoModelForAudioGeneration
|
17 |
+
|
18 |
+
# Set up logging for better debug tracking
|
19 |
+
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
|
20 |
+
logger = logging.getLogger()
|
21 |
+
|
22 |
+
# Load Places365 model for scene detection (on CPU to save GPU memory)
|
23 |
+
try:
|
24 |
+
logging.info("Loading Places365 model for scene detection...")
|
25 |
+
places365 = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True)
|
26 |
+
places365.eval()
|
27 |
+
places365.to("cpu") # Move to CPU
|
28 |
+
logging.info("Places365 model loaded successfully.")
|
29 |
+
except Exception as e:
|
30 |
+
logging.error(f"Error loading Places365 model: {e}")
|
31 |
+
raise
|
32 |
+
|
33 |
+
# Load Places365 class labels
|
34 |
+
!wget http://places2.csail.mit.edu/models_places365/categories_places365.txt
|
35 |
+
with open("categories_places365.txt", "r") as f:
|
36 |
+
SCENE_CLASSES = [line.strip().split(" ")[0][3:] for line in f.readlines()]
|
37 |
+
|
38 |
+
# Load AudioGen Medium and MusicGen Medium models
|
39 |
+
try:
|
40 |
+
logging.info("Loading AudioGen Medium and MusicGen Medium models...")
|
41 |
+
audiogen_processor = AutoProcessor.from_pretrained("facebook/audiogen-medium")
|
42 |
+
audiogen_model = AutoModelForAudioGeneration.from_pretrained("facebook/audiogen-medium")
|
43 |
+
musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-medium")
|
44 |
+
musicgen_model = AutoModelForAudioGeneration.from_pretrained("facebook/musicgen-medium")
|
45 |
+
|
46 |
+
# Move models to GPU if available
|
47 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
48 |
+
audiogen_model.to(device)
|
49 |
+
musicgen_model.to(device)
|
50 |
+
logging.info("AudioGen Medium and MusicGen Medium models loaded successfully.")
|
51 |
+
except Exception as e:
|
52 |
+
logging.error(f"Error loading AudioGen/MusicGen models: {e}")
|
53 |
+
raise
|
54 |
+
|
55 |
+
# Function to classify a frame using Places365
|
56 |
+
def classify_frame(frame):
|
57 |
+
try:
|
58 |
+
preprocess = transforms.Compose([
|
59 |
+
transforms.Resize(128), # Smaller resolution
|
60 |
+
transforms.CenterCrop(128),
|
61 |
+
transforms.ToTensor(),
|
62 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
63 |
+
])
|
64 |
+
img = Image.fromarray(frame)
|
65 |
+
img = preprocess(img).unsqueeze(0)
|
66 |
+
with torch.no_grad():
|
67 |
+
output = places365(img.to("cpu")) # Ensure inference on CPU
|
68 |
+
probabilities = F.softmax(output, dim=1)
|
69 |
+
_, predicted = torch.max(probabilities, 1)
|
70 |
+
predicted_index = predicted.item()
|
71 |
+
|
72 |
+
# Ensure the predicted index is within the range of SCENE_CLASSES
|
73 |
+
if predicted_index >= len(SCENE_CLASSES) or predicted_index < 0:
|
74 |
+
logging.warning(f"Predicted class index {predicted_index} is out of range. Defaulting to 'nature'.")
|
75 |
+
return "nature" # Default scene type
|
76 |
+
|
77 |
+
scene_type = SCENE_CLASSES[predicted_index]
|
78 |
+
logging.info(f"Predicted scene: {scene_type}")
|
79 |
+
return scene_type
|
80 |
+
except Exception as e:
|
81 |
+
logging.error(f"Error classifying frame: {e}")
|
82 |
+
raise
|
83 |
+
|
84 |
+
# Function to analyze video content and return the scene type using Places365
|
85 |
+
def analyze_video(video_path):
|
86 |
+
try:
|
87 |
+
logging.info(f"Analyzing video: {video_path}")
|
88 |
+
clip = VideoFileClip(video_path)
|
89 |
+
frame = clip.get_frame(0) # Get the first frame
|
90 |
+
frame = Image.fromarray(frame) # Convert to PIL image
|
91 |
+
frame = np.array(frame.resize((128, 128))) # Resize to reduce memory usage
|
92 |
+
|
93 |
+
# Classify the frame using Places365
|
94 |
+
scene_type = classify_frame(frame)
|
95 |
+
logging.info(f"Scene type detected: {scene_type}")
|
96 |
+
return scene_type
|
97 |
+
except Exception as e:
|
98 |
+
logging.error(f"Error analyzing video: {e}")
|
99 |
+
raise
|
100 |
+
|
101 |
+
# Function to generate audio using AudioGen Medium
|
102 |
+
def generate_audio_audiogen(scene, duration=10):
|
103 |
+
try:
|
104 |
+
logging.info(f"Generating audio for scene: {scene} using AudioGen Medium...")
|
105 |
+
inputs = audiogen_processor(
|
106 |
+
text=[f"Ambient sounds of {scene}"],
|
107 |
+
padding=True,
|
108 |
+
return_tensors="pt",
|
109 |
+
).to(audiogen_model.device) # Move inputs to the same device as the model
|
110 |
+
with torch.no_grad():
|
111 |
+
audio = audiogen_model.generate(**inputs, max_new_tokens=duration * 50) # Adjust tokens for duration
|
112 |
+
audio = audio.cpu().numpy().squeeze()
|
113 |
+
audio_path = "generated_audio_audiogen.wav"
|
114 |
+
write_wav(audio_path, 16000, audio) # Save as WAV file
|
115 |
+
logging.info(f"Audio generated and saved to: {audio_path}")
|
116 |
+
return audio_path
|
117 |
+
except Exception as e:
|
118 |
+
logging.error(f"Error generating audio with AudioGen Medium: {e}")
|
119 |
+
raise
|
120 |
+
|
121 |
+
# Function to generate music using MusicGen Medium
|
122 |
+
def generate_music_musicgen(scene, duration=10):
|
123 |
+
try:
|
124 |
+
logging.info(f"Generating music for scene: {scene} using MusicGen Medium...")
|
125 |
+
inputs = musicgen_processor(
|
126 |
+
text=[f"Calm music for {scene}"],
|
127 |
+
padding=True,
|
128 |
+
return_tensors="pt",
|
129 |
+
).to(musicgen_model.device) # Move inputs to the same device as the model
|
130 |
+
with torch.no_grad():
|
131 |
+
music = musicgen_model.generate(**inputs, max_new_tokens=duration * 50) # Adjust tokens for duration
|
132 |
+
music = music.cpu().numpy().squeeze()
|
133 |
+
music_path = "generated_music_musicgen.wav"
|
134 |
+
write_wav(music_path, 16000, music) # Save as WAV file
|
135 |
+
logging.info(f"Music generated and saved to: {music_path}")
|
136 |
+
return music_path
|
137 |
+
except Exception as e:
|
138 |
+
logging.error(f"Error generating music with MusicGen Medium: {e}")
|
139 |
+
raise
|
140 |
+
|
141 |
+
# Function to merge audio and video into a final video file using moviepy
|
142 |
+
def merge_audio_video(video_path, audio_path, output_path="output.mp4"):
|
143 |
+
try:
|
144 |
+
logging.info("Merging audio and video using moviepy...")
|
145 |
+
video_clip = VideoFileClip(video_path)
|
146 |
+
audio_clip = AudioFileClip(audio_path)
|
147 |
+
final_clip = video_clip.set_audio(audio_clip)
|
148 |
+
final_clip.write_videofile(output_path, codec="libx264", audio_codec="aac")
|
149 |
+
logging.info(f"Final video saved to: {output_path}")
|
150 |
+
return output_path
|
151 |
+
except Exception as e:
|
152 |
+
logging.error(f"Error merging audio and video: {e}")
|
153 |
+
return None
|
154 |
+
|
155 |
+
# Main processing function to handle video upload, scene analysis, and video output
|
156 |
+
def process_video(video_path, progress=gr.Progress()):
|
157 |
+
try:
|
158 |
+
progress(0.1, desc="Starting video processing...")
|
159 |
+
logging.info("Starting video processing...")
|
160 |
+
|
161 |
+
# Analyze the video to determine the scene type
|
162 |
+
progress(0.3, desc="Analyzing video...")
|
163 |
+
scene_type = analyze_video(video_path)
|
164 |
+
|
165 |
+
# Generate audio using AudioGen Medium
|
166 |
+
progress(0.5, desc="Generating audio...")
|
167 |
+
audio_path = generate_audio_audiogen(scene_type, duration=10)
|
168 |
+
|
169 |
+
# Generate music using MusicGen Medium
|
170 |
+
progress(0.7, desc="Generating music...")
|
171 |
+
music_path = generate_music_musicgen(scene_type, duration=10)
|
172 |
+
|
173 |
+
# Merge the generated audio with the video and output the final video
|
174 |
+
progress(0.9, desc="Merging audio and video...")
|
175 |
+
output_path = merge_audio_video(video_path, music_path)
|
176 |
+
if not output_path:
|
177 |
+
return "Error: Failed to merge audio and video.", "Logs: Merge failed."
|
178 |
+
|
179 |
+
logging.info("Video processing completed successfully.")
|
180 |
+
return output_path, "Logs: Processing completed."
|
181 |
+
except Exception as e:
|
182 |
+
logging.error(f"Error in process_video: {e}")
|
183 |
+
return f"An error occurred during processing: {e}", f"Logs: {e}"
|
184 |
+
|
185 |
+
# Gradio UI for video upload
|
186 |
+
def gradio_interface(video_file, progress=gr.Progress()):
|
187 |
+
try:
|
188 |
+
progress(0.1, desc="Starting video processing...")
|
189 |
+
logging.info("Gradio interface triggered.")
|
190 |
+
output_video, logs = process_video(video_file, progress)
|
191 |
+
return output_video, logs
|
192 |
+
except Exception as e:
|
193 |
+
logging.error(f"Error in Gradio interface: {e}")
|
194 |
+
return f"An error occurred: {e}", f"Logs: {e}"
|
195 |
+
|
196 |
+
# Launch Gradio app
|
197 |
+
try:
|
198 |
+
logging.info("Launching Gradio app...")
|
199 |
+
interface = gr.Interface(
|
200 |
+
fn=gradio_interface,
|
201 |
+
inputs=[gr.Video(label="Upload Video")],
|
202 |
+
outputs=[gr.Video(label="Output Video with Generated Audio"), gr.Textbox(label="Logs", lines=10)],
|
203 |
+
title="Video to Video with Generated Audio and Music",
|
204 |
+
description="Upload a video, and this app will analyze it and generate matching audio and music using AudioGen Medium and MusicGen Medium."
|
205 |
+
)
|
206 |
+
interface.queue() # Enable queue for long-running tasks
|
207 |
+
interface.launch(share=True) # Launch the app
|
208 |
+
except Exception as e:
|
209 |
+
logging.error(f"Error launching Gradio app: {e}")
|
210 |
+
raise
|