Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Install required libraries
|
| 2 |
+
!pip install gradio moviepy torch torchaudio soundfile pillow numpy scipy transformers
|
| 3 |
+
|
| 4 |
+
# Import libraries
|
| 5 |
+
import os
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import torch
|
| 8 |
+
import soundfile as sf
|
| 9 |
+
import numpy as np
|
| 10 |
+
from PIL import Image
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
import logging
|
| 13 |
+
from scipy.io.wavfile import write as write_wav
|
| 14 |
+
from scipy import signal
|
| 15 |
+
from moviepy.editor import VideoFileClip, AudioFileClip
|
| 16 |
+
from transformers import AutoProcessor, AutoModelForAudioGeneration
|
| 17 |
+
|
| 18 |
+
# Set up logging for better debug tracking
|
| 19 |
+
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 20 |
+
logger = logging.getLogger()
|
| 21 |
+
|
| 22 |
+
# Load Places365 model for scene detection (on CPU to save GPU memory)
|
| 23 |
+
try:
|
| 24 |
+
logging.info("Loading Places365 model for scene detection...")
|
| 25 |
+
places365 = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True)
|
| 26 |
+
places365.eval()
|
| 27 |
+
places365.to("cpu") # Move to CPU
|
| 28 |
+
logging.info("Places365 model loaded successfully.")
|
| 29 |
+
except Exception as e:
|
| 30 |
+
logging.error(f"Error loading Places365 model: {e}")
|
| 31 |
+
raise
|
| 32 |
+
|
| 33 |
+
# Load Places365 class labels
|
| 34 |
+
!wget http://places2.csail.mit.edu/models_places365/categories_places365.txt
|
| 35 |
+
with open("categories_places365.txt", "r") as f:
|
| 36 |
+
SCENE_CLASSES = [line.strip().split(" ")[0][3:] for line in f.readlines()]
|
| 37 |
+
|
| 38 |
+
# Load AudioGen Medium and MusicGen Medium models
|
| 39 |
+
try:
|
| 40 |
+
logging.info("Loading AudioGen Medium and MusicGen Medium models...")
|
| 41 |
+
audiogen_processor = AutoProcessor.from_pretrained("facebook/audiogen-medium")
|
| 42 |
+
audiogen_model = AutoModelForAudioGeneration.from_pretrained("facebook/audiogen-medium")
|
| 43 |
+
musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-medium")
|
| 44 |
+
musicgen_model = AutoModelForAudioGeneration.from_pretrained("facebook/musicgen-medium")
|
| 45 |
+
|
| 46 |
+
# Move models to GPU if available
|
| 47 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 48 |
+
audiogen_model.to(device)
|
| 49 |
+
musicgen_model.to(device)
|
| 50 |
+
logging.info("AudioGen Medium and MusicGen Medium models loaded successfully.")
|
| 51 |
+
except Exception as e:
|
| 52 |
+
logging.error(f"Error loading AudioGen/MusicGen models: {e}")
|
| 53 |
+
raise
|
| 54 |
+
|
| 55 |
+
# Function to classify a frame using Places365
|
| 56 |
+
def classify_frame(frame):
|
| 57 |
+
try:
|
| 58 |
+
preprocess = transforms.Compose([
|
| 59 |
+
transforms.Resize(128), # Smaller resolution
|
| 60 |
+
transforms.CenterCrop(128),
|
| 61 |
+
transforms.ToTensor(),
|
| 62 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 63 |
+
])
|
| 64 |
+
img = Image.fromarray(frame)
|
| 65 |
+
img = preprocess(img).unsqueeze(0)
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
output = places365(img.to("cpu")) # Ensure inference on CPU
|
| 68 |
+
probabilities = F.softmax(output, dim=1)
|
| 69 |
+
_, predicted = torch.max(probabilities, 1)
|
| 70 |
+
predicted_index = predicted.item()
|
| 71 |
+
|
| 72 |
+
# Ensure the predicted index is within the range of SCENE_CLASSES
|
| 73 |
+
if predicted_index >= len(SCENE_CLASSES) or predicted_index < 0:
|
| 74 |
+
logging.warning(f"Predicted class index {predicted_index} is out of range. Defaulting to 'nature'.")
|
| 75 |
+
return "nature" # Default scene type
|
| 76 |
+
|
| 77 |
+
scene_type = SCENE_CLASSES[predicted_index]
|
| 78 |
+
logging.info(f"Predicted scene: {scene_type}")
|
| 79 |
+
return scene_type
|
| 80 |
+
except Exception as e:
|
| 81 |
+
logging.error(f"Error classifying frame: {e}")
|
| 82 |
+
raise
|
| 83 |
+
|
| 84 |
+
# Function to analyze video content and return the scene type using Places365
|
| 85 |
+
def analyze_video(video_path):
|
| 86 |
+
try:
|
| 87 |
+
logging.info(f"Analyzing video: {video_path}")
|
| 88 |
+
clip = VideoFileClip(video_path)
|
| 89 |
+
frame = clip.get_frame(0) # Get the first frame
|
| 90 |
+
frame = Image.fromarray(frame) # Convert to PIL image
|
| 91 |
+
frame = np.array(frame.resize((128, 128))) # Resize to reduce memory usage
|
| 92 |
+
|
| 93 |
+
# Classify the frame using Places365
|
| 94 |
+
scene_type = classify_frame(frame)
|
| 95 |
+
logging.info(f"Scene type detected: {scene_type}")
|
| 96 |
+
return scene_type
|
| 97 |
+
except Exception as e:
|
| 98 |
+
logging.error(f"Error analyzing video: {e}")
|
| 99 |
+
raise
|
| 100 |
+
|
| 101 |
+
# Function to generate audio using AudioGen Medium
|
| 102 |
+
def generate_audio_audiogen(scene, duration=10):
|
| 103 |
+
try:
|
| 104 |
+
logging.info(f"Generating audio for scene: {scene} using AudioGen Medium...")
|
| 105 |
+
inputs = audiogen_processor(
|
| 106 |
+
text=[f"Ambient sounds of {scene}"],
|
| 107 |
+
padding=True,
|
| 108 |
+
return_tensors="pt",
|
| 109 |
+
).to(audiogen_model.device) # Move inputs to the same device as the model
|
| 110 |
+
with torch.no_grad():
|
| 111 |
+
audio = audiogen_model.generate(**inputs, max_new_tokens=duration * 50) # Adjust tokens for duration
|
| 112 |
+
audio = audio.cpu().numpy().squeeze()
|
| 113 |
+
audio_path = "generated_audio_audiogen.wav"
|
| 114 |
+
write_wav(audio_path, 16000, audio) # Save as WAV file
|
| 115 |
+
logging.info(f"Audio generated and saved to: {audio_path}")
|
| 116 |
+
return audio_path
|
| 117 |
+
except Exception as e:
|
| 118 |
+
logging.error(f"Error generating audio with AudioGen Medium: {e}")
|
| 119 |
+
raise
|
| 120 |
+
|
| 121 |
+
# Function to generate music using MusicGen Medium
|
| 122 |
+
def generate_music_musicgen(scene, duration=10):
|
| 123 |
+
try:
|
| 124 |
+
logging.info(f"Generating music for scene: {scene} using MusicGen Medium...")
|
| 125 |
+
inputs = musicgen_processor(
|
| 126 |
+
text=[f"Calm music for {scene}"],
|
| 127 |
+
padding=True,
|
| 128 |
+
return_tensors="pt",
|
| 129 |
+
).to(musicgen_model.device) # Move inputs to the same device as the model
|
| 130 |
+
with torch.no_grad():
|
| 131 |
+
music = musicgen_model.generate(**inputs, max_new_tokens=duration * 50) # Adjust tokens for duration
|
| 132 |
+
music = music.cpu().numpy().squeeze()
|
| 133 |
+
music_path = "generated_music_musicgen.wav"
|
| 134 |
+
write_wav(music_path, 16000, music) # Save as WAV file
|
| 135 |
+
logging.info(f"Music generated and saved to: {music_path}")
|
| 136 |
+
return music_path
|
| 137 |
+
except Exception as e:
|
| 138 |
+
logging.error(f"Error generating music with MusicGen Medium: {e}")
|
| 139 |
+
raise
|
| 140 |
+
|
| 141 |
+
# Function to merge audio and video into a final video file using moviepy
|
| 142 |
+
def merge_audio_video(video_path, audio_path, output_path="output.mp4"):
|
| 143 |
+
try:
|
| 144 |
+
logging.info("Merging audio and video using moviepy...")
|
| 145 |
+
video_clip = VideoFileClip(video_path)
|
| 146 |
+
audio_clip = AudioFileClip(audio_path)
|
| 147 |
+
final_clip = video_clip.set_audio(audio_clip)
|
| 148 |
+
final_clip.write_videofile(output_path, codec="libx264", audio_codec="aac")
|
| 149 |
+
logging.info(f"Final video saved to: {output_path}")
|
| 150 |
+
return output_path
|
| 151 |
+
except Exception as e:
|
| 152 |
+
logging.error(f"Error merging audio and video: {e}")
|
| 153 |
+
return None
|
| 154 |
+
|
| 155 |
+
# Main processing function to handle video upload, scene analysis, and video output
|
| 156 |
+
def process_video(video_path, progress=gr.Progress()):
|
| 157 |
+
try:
|
| 158 |
+
progress(0.1, desc="Starting video processing...")
|
| 159 |
+
logging.info("Starting video processing...")
|
| 160 |
+
|
| 161 |
+
# Analyze the video to determine the scene type
|
| 162 |
+
progress(0.3, desc="Analyzing video...")
|
| 163 |
+
scene_type = analyze_video(video_path)
|
| 164 |
+
|
| 165 |
+
# Generate audio using AudioGen Medium
|
| 166 |
+
progress(0.5, desc="Generating audio...")
|
| 167 |
+
audio_path = generate_audio_audiogen(scene_type, duration=10)
|
| 168 |
+
|
| 169 |
+
# Generate music using MusicGen Medium
|
| 170 |
+
progress(0.7, desc="Generating music...")
|
| 171 |
+
music_path = generate_music_musicgen(scene_type, duration=10)
|
| 172 |
+
|
| 173 |
+
# Merge the generated audio with the video and output the final video
|
| 174 |
+
progress(0.9, desc="Merging audio and video...")
|
| 175 |
+
output_path = merge_audio_video(video_path, music_path)
|
| 176 |
+
if not output_path:
|
| 177 |
+
return "Error: Failed to merge audio and video.", "Logs: Merge failed."
|
| 178 |
+
|
| 179 |
+
logging.info("Video processing completed successfully.")
|
| 180 |
+
return output_path, "Logs: Processing completed."
|
| 181 |
+
except Exception as e:
|
| 182 |
+
logging.error(f"Error in process_video: {e}")
|
| 183 |
+
return f"An error occurred during processing: {e}", f"Logs: {e}"
|
| 184 |
+
|
| 185 |
+
# Gradio UI for video upload
|
| 186 |
+
def gradio_interface(video_file, progress=gr.Progress()):
|
| 187 |
+
try:
|
| 188 |
+
progress(0.1, desc="Starting video processing...")
|
| 189 |
+
logging.info("Gradio interface triggered.")
|
| 190 |
+
output_video, logs = process_video(video_file, progress)
|
| 191 |
+
return output_video, logs
|
| 192 |
+
except Exception as e:
|
| 193 |
+
logging.error(f"Error in Gradio interface: {e}")
|
| 194 |
+
return f"An error occurred: {e}", f"Logs: {e}"
|
| 195 |
+
|
| 196 |
+
# Launch Gradio app
|
| 197 |
+
try:
|
| 198 |
+
logging.info("Launching Gradio app...")
|
| 199 |
+
interface = gr.Interface(
|
| 200 |
+
fn=gradio_interface,
|
| 201 |
+
inputs=[gr.Video(label="Upload Video")],
|
| 202 |
+
outputs=[gr.Video(label="Output Video with Generated Audio"), gr.Textbox(label="Logs", lines=10)],
|
| 203 |
+
title="Video to Video with Generated Audio and Music",
|
| 204 |
+
description="Upload a video, and this app will analyze it and generate matching audio and music using AudioGen Medium and MusicGen Medium."
|
| 205 |
+
)
|
| 206 |
+
interface.queue() # Enable queue for long-running tasks
|
| 207 |
+
interface.launch(share=True) # Launch the app
|
| 208 |
+
except Exception as e:
|
| 209 |
+
logging.error(f"Error launching Gradio app: {e}")
|
| 210 |
+
raise
|