Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,21 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
-
from langchain.embeddings import Embedding
|
4 |
from groq import Groq
|
5 |
from langchain.chains import RetrievalQA
|
6 |
from langchain.vectorstores import FAISS
|
7 |
from langchain.document_loaders import PyPDFLoader
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
from langchain.llms import OpenAI
|
10 |
-
from langchain.agents import initialize_agent
|
11 |
-
from langchain.agents import Tool
|
12 |
|
13 |
-
# Set up Groq API
|
14 |
-
|
15 |
|
16 |
-
# Define a custom embedding class for Groq
|
17 |
-
class GroqEmbedding
|
18 |
-
def __init__(self, model="groq-embedding-model"
|
19 |
self.model = model
|
20 |
-
self.client = Groq(api_key=
|
21 |
-
|
22 |
def embed_documents(self, texts):
|
23 |
# Use Groq's API to generate embeddings
|
24 |
embeddings = self.client.embed_documents(texts, model=self.model)
|
@@ -43,7 +40,7 @@ if uploaded_file is not None:
|
|
43 |
split_docs = text_splitter.split_documents(documents)
|
44 |
|
45 |
# Create embeddings using Groq
|
46 |
-
embeddings = GroqEmbedding(api_key=
|
47 |
|
48 |
# Create a FAISS vector store
|
49 |
vector_db = FAISS.from_documents(split_docs, embeddings)
|
@@ -57,4 +54,3 @@ if uploaded_file is not None:
|
|
57 |
if query:
|
58 |
result = qa.run(query)
|
59 |
st.write("Answer:", result)
|
60 |
-
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
|
|
3 |
from groq import Groq
|
4 |
from langchain.chains import RetrievalQA
|
5 |
from langchain.vectorstores import FAISS
|
6 |
from langchain.document_loaders import PyPDFLoader
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
from langchain.llms import OpenAI
|
|
|
|
|
9 |
|
10 |
+
# Set up Groq API key
|
11 |
+
GROQ_API_KEY = "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"
|
12 |
|
13 |
+
# Define a custom embedding class for Groq (since Langchain may not support direct Groq API integration)
|
14 |
+
class GroqEmbedding:
|
15 |
+
def __init__(self, model="groq-embedding-model"):
|
16 |
self.model = model
|
17 |
+
self.client = Groq(api_key=GROQ_API_KEY)
|
18 |
+
|
19 |
def embed_documents(self, texts):
|
20 |
# Use Groq's API to generate embeddings
|
21 |
embeddings = self.client.embed_documents(texts, model=self.model)
|
|
|
40 |
split_docs = text_splitter.split_documents(documents)
|
41 |
|
42 |
# Create embeddings using Groq
|
43 |
+
embeddings = GroqEmbedding(api_key=GROQ_API_KEY)
|
44 |
|
45 |
# Create a FAISS vector store
|
46 |
vector_db = FAISS.from_documents(split_docs, embeddings)
|
|
|
54 |
if query:
|
55 |
result = qa.run(query)
|
56 |
st.write("Answer:", result)
|
|