Ahmadkhan12 commited on
Commit
bb3c09f
·
verified ·
1 Parent(s): 7d33f8f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -12
app.py CHANGED
@@ -1,24 +1,21 @@
1
  import os
2
  import streamlit as st
3
- from langchain.embeddings import Embedding
4
  from groq import Groq
5
  from langchain.chains import RetrievalQA
6
  from langchain.vectorstores import FAISS
7
  from langchain.document_loaders import PyPDFLoader
8
  from langchain.text_splitter import RecursiveCharacterTextSplitter
9
  from langchain.llms import OpenAI
10
- from langchain.agents import initialize_agent
11
- from langchain.agents import Tool
12
 
13
- # Set up Groq API
14
- groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
15
 
16
- # Define a custom embedding class for Groq
17
- class GroqEmbedding(Embedding):
18
- def __init__(self, model="groq-embedding-model", api_key=None):
19
  self.model = model
20
- self.client = Groq(api_key=api_key or os.getenv("GROQ_API_KEY"))
21
-
22
  def embed_documents(self, texts):
23
  # Use Groq's API to generate embeddings
24
  embeddings = self.client.embed_documents(texts, model=self.model)
@@ -43,7 +40,7 @@ if uploaded_file is not None:
43
  split_docs = text_splitter.split_documents(documents)
44
 
45
  # Create embeddings using Groq
46
- embeddings = GroqEmbedding(api_key=os.getenv("GROQ_API_KEY"))
47
 
48
  # Create a FAISS vector store
49
  vector_db = FAISS.from_documents(split_docs, embeddings)
@@ -57,4 +54,3 @@ if uploaded_file is not None:
57
  if query:
58
  result = qa.run(query)
59
  st.write("Answer:", result)
60
-
 
1
  import os
2
  import streamlit as st
 
3
  from groq import Groq
4
  from langchain.chains import RetrievalQA
5
  from langchain.vectorstores import FAISS
6
  from langchain.document_loaders import PyPDFLoader
7
  from langchain.text_splitter import RecursiveCharacterTextSplitter
8
  from langchain.llms import OpenAI
 
 
9
 
10
+ # Set up Groq API key
11
+ GROQ_API_KEY = "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"
12
 
13
+ # Define a custom embedding class for Groq (since Langchain may not support direct Groq API integration)
14
+ class GroqEmbedding:
15
+ def __init__(self, model="groq-embedding-model"):
16
  self.model = model
17
+ self.client = Groq(api_key=GROQ_API_KEY)
18
+
19
  def embed_documents(self, texts):
20
  # Use Groq's API to generate embeddings
21
  embeddings = self.client.embed_documents(texts, model=self.model)
 
40
  split_docs = text_splitter.split_documents(documents)
41
 
42
  # Create embeddings using Groq
43
+ embeddings = GroqEmbedding(api_key=GROQ_API_KEY)
44
 
45
  # Create a FAISS vector store
46
  vector_db = FAISS.from_documents(split_docs, embeddings)
 
54
  if query:
55
  result = qa.run(query)
56
  st.write("Answer:", result)